Insectes Sociaux

, Volume 64, Issue 2, pp 241–246 | Cite as

No evidence of queen thelytoky following interspecific crosses of the honey bees Apis cerana and Apis mellifera

  • R. Gloag
  • K. Tan
  • Y. Wang
  • W. Song
  • W. Luo
  • G. Buchman
  • M. Beekman
  • B. P. Oldroyd
Research Article


The human-mediated dispersal of species over geographical boundaries can bring previously isolated sister taxa into contact. Interspecific mating between closely related species may then occur, with various outcomes ranging from hybridization to reproductive interference. In the case of the Eastern honey bee Apis cerana and the Western honey bee Apis mellifera, an additional possible reproductive outcome has been posited: interspecific sperm triggers queens to produce daughters from unfertilized eggs via thelytokous parthenogenesis. Such an outcome would go unnoticed in natural population mergers, as queens, which are polyandrous, are likely to mate with both conspecific and interspecific males. We performed reciprocal crosses between A. mellifera and A. cerana via artificial insemination, plus control inseminations of saline (five queens per species per treatment), and genetically assessed the sex and origin of any resulting offspring. Neither A. cerana nor A. mellifera queens produced viable female brood after receiving interspecific semen, indicating a high cost of interspecific mating for both species. In two A. cerana colonies headed by cross-inseminated queens, workers responded by activating ovaries and laying eggs that were mainly male but occasionally female (i.e. thelytokous, 2% of brood), despite the queen’s continued presence in the nest. We conclude that thelytoky is not a consistent response to interspecific mating by queens of A. mellifera or A. cerana. Rather, at least in A. cerana, when colonies are faced with “mis-mated” queens, it may be up to the workers to secure the reproductive future of the colony.


Interspecific mating Thelytokous parthenogenesis Hymenoptera Worker reproduction Reproductive interference 


  1. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R et al (2013) Hybridization and speciation. J Evol Biol 26:229–246. doi:10.1111/j.1420-9101.2012.02599.x CrossRefPubMedGoogle Scholar
  2. Anderson RH (1963) The laying worker in the Cape honeybee Apis mellifera capensis. J Apic Res 2:85–92. doi:10.1080/00218839.1963.11100065 CrossRefGoogle Scholar
  3. Arias MC, Sheppard WS (2005) Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Mol Phylo Evol 37:25–35. doi:10.1006/mpev.1996.0050 CrossRefGoogle Scholar
  4. Beekman M, Allsopp M, Wossler TC Oldroyd BP (2008) Factors affecting the dynamics of the honey bee (Apis mellifera) hybrid zone of South Africa. Heredity 100:13–18. doi:10.1038/sj.hdy.6801058 CrossRefPubMedGoogle Scholar
  5. Beekman M, Allsopp MH, Lim J, Goudie F Oldroyd BP (2011) Asexually produced Cape honeybee queens (Apis mellifera capensis) reproduce sexually. J Hered 102:562–566. doi:10.1093/jhered/esr075 CrossRefPubMedGoogle Scholar
  6. Bourke A (1994) Worker matricide in social bees and wasps. J Theoret Biol 167:283–292. doi:10.1006/jtbi.1994.1070 CrossRefGoogle Scholar
  7. Chapman NC, Beekman M, Allsopp MH, Rinderer TE, Lim J, Oxley PR, Oldroyd BP (2015) Inheritance of thelytoky in the honey bee Apis mellifera capensis. Heredity 114:584–592. doi:10.1038/hdy.2014.127 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Inc, MassachusettsGoogle Scholar
  9. Feldhaar H, Foitzik S, Heinze J (2008) Lifelong commitment to the wrong partner: hybridization in ants. Philos Trans R Soc Lond B 363:2891–2899 doi:10.1098/rstb.2008.0022 CrossRefGoogle Scholar
  10. Goudie F, Oldroyd BP (2014) Thelytoky in the honey bee. Apidologie 35:306–326. doi:10.1007/s13592-013-0261-2 CrossRefGoogle Scholar
  11. Groning J, Hochkirch A (2008) Reproductive interference between animal species. Quart Rev Biol 83:257–282 doi:10.1086/590510 CrossRefPubMedGoogle Scholar
  12. Harbo JR (1986) Propagation and instrumental insemination. In: Rinderer TE (ed) Bee genetics and breeding. Academic Press, Orlando, pp 361–389CrossRefGoogle Scholar
  13. Hewitt GM (1988) Hybrid zones—natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167. doi:10.1016/0169-5347(88)90033-X CrossRefPubMedGoogle Scholar
  14. Holmes MJ, Tan K, Wang Z, Oldroyd BP, Beekman M (2014) Why acquiesce? Worker reproductive parasitism in the Eastern honeybee (Apis cerana). J Evol Biol 27:939–949. doi:10.1111/jeb.12366 CrossRefPubMedGoogle Scholar
  15. Holmes MJ, Tan K, Wang Z, Oldroyd BP, Beekman M (2015) Genetic reincarnation of workers as queens in the Eastern honeybee Apis cerana. Heredity 114:65–68. doi:10.1038/hdy.2014.70 CrossRefPubMedGoogle Scholar
  16. Jarosch A, Stolle E, Crewe RM, Moritz FFA (2011) Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera). Proc Nat Acad Sci USA 108:15282–15287 doi:10.1073/pnas.1109343108 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555 doi:10.1111/j.1755-0998.2009.02787.x CrossRefPubMedGoogle Scholar
  18. Ken T, Mingxian Y, Radloff SE, Pirk CWW, Crewe RM, Phiancharoen M, Hepburn R, Oldroyd BP (2009) Worker reproduction in mixed-species colonies of honey bees. Behav Ecol 20:1106–1110. doi:10.1093/beheco/arp103 CrossRefGoogle Scholar
  19. Koetz A (2013) Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 4:558–592 doi:10.3390/insects4040558 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mackensen O (1943) The occurrence of parthenogenetic females in some strains of honey-bees. J Econ Ent 36:465–467. doi:10.1093/jee/36.3.465 CrossRefGoogle Scholar
  21. Mallet J (2007) Hybrid speciation. Nature 446:279–283. doi:10.1038/nature05706 CrossRefPubMedGoogle Scholar
  22. Nakamura J, Takahashi J, Yoshida T, Hoshiba H (1998) Thelytokous parthenogenesis in interspecific-mated honeybee queens. In: Schwarz MP, Hogendoorn K (eds) Proceedings of the XIII international congress of IUSSI. XIII congress of IUSSI, Adelaide, pp 337Google Scholar
  23. Nanork P, Chapman NC, Wongsiri S, Lim J, Gloag S, Oldroyd BP (2007) Social parasitism by workers in queenless and queenright Apis cerana colonies. Mol Ecol 16:1107–1114. doi:10.1111/j.1365-294X.2006.03207.x CrossRefPubMedGoogle Scholar
  24. Oldroyd BP, Clifton MJ, Parker K, Wongsiri S, Rinderer TE, Crozier RH (1998) Evolution of mating behaviour in the Genus Apis and an estimate of mating frequency in Apis cerana (Hymenoptera: Apidae). Annu Ent Soc Am 91:700–709 doi:10.1051/apido:2000119 CrossRefGoogle Scholar
  25. Oldroyd BP, Halling LA, Good G, Wattanachaiyingchareon W, Barron AB, Nanork P, Wongsiri S, Ratnieks FLW (2001) Worker policing and worker reproduction in Apis cerana. Behav Ecol Sociobiol 50:371–377. doi:10.1007/s002650100376 CrossRefGoogle Scholar
  26. Oldroyd BP, Osborne KE (1999) The evolution of worker sterility in honeybees: the genetic basis of failure of worker policing. Proc R Soc Lond B 266:1335–1339 doi:10.1098/rspb.1999.0784 CrossRefGoogle Scholar
  27. Oldroyd BP, Wongsiri S (2006) Asian honey bees: biology, conservation and human interactions. Harvard University Press, CambridgeGoogle Scholar
  28. Pearson B (1983) Hybridisation between the ant species Lasius niger and Lasius alienus: the genetic evidence. Ins Sociaux 30:402–411 doi:10.1007/BF02223971 CrossRefGoogle Scholar
  29. Rabeling C, Kronauer DJC (2013) Thelytokous parthenogenesis in eusocial Hymenoptera. Ann Rev Ent 58:273–292. doi:10.1146/annurev-ento-120811-153710 CrossRefGoogle Scholar
  30. Remnant EJ, Koetz A, Tan K, Hinson E, Beekman M, Oldroyd BP (2014) Reproductive interference between honey bee species in Australia and China. Mol Ecol 23:1096–1107. doi:10.1111/mec.12669 CrossRefPubMedGoogle Scholar
  31. Rueppell O, Hunggims E, Tingek S (2008) Association between larger ovaries and pollen foraging in queenless Apis cerana workers supports the reproductive ground-plan hypothesis of social evolution. J Insect Behav 21:317–321. doi:10.1007/s10905-008-9135-2 CrossRefGoogle Scholar
  32. Ruttner F, Maul V (1983) Experimental analysis of the interspecific isolation of Apis mellifera L. and Apis cerana Fabr. Apidologie 14:309–327CrossRefGoogle Scholar
  33. Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet J-M (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol Ecol Notes 3:307–311. doi:10.1046/j.1471-8286.2003.00436.x CrossRefGoogle Scholar
  34. Takahashi J-i, Shimizu S, Koyama S, Imura K, Shimizu I, Yoshida T (2009) Variable microsatellite loci isolated from the Asian honeybee, Apis cerana (Hymenoptera; Apidae). Mol Ecol Resour 9:819–821 doi:10.1111/j.1755-0998.2009.02268.x CrossRefPubMedGoogle Scholar
  35. Tan K, Liu X, Dong S, Wang C, Oldroyd BP (2015) Pheromones affecting ovary activation and ovariole loss in the Asian honey bee Apis cerana. J Insect Physiol 74:25–29. doi:10.1016/j.jinsphys.2015.01.006 CrossRefPubMedGoogle Scholar
  36. Tarpy DR, Caren JR, Delaney DA, Sammataro D, Finley J, Loper GM, DeGrandi-Hoffman G (2015) Mating frequencies of Africanized honey bees in the south western USA. J Api Res 49:302–310. doi:10.3896/IBRA. CrossRefGoogle Scholar
  37. Traynor KS, Le Conte Y, Page RE (2014) Queen and young larval pheromones impact nursing and reproductive physiology of honey bee workers. Behav Ecol Sociobiol 68:2059–2073. doi:10.1007/s00265-014-1811-y CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tucker KW (1958) Automictic parthenogenesis in the honey bee. Genetics 43:299–316PubMedPubMedCentralGoogle Scholar
  39. Walsh PS, Metzger DA, Higuchi R (1991) Chelex (R)100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:507Google Scholar
  40. Yoshida T (1994) Interspecific instrumental insemination using mixed semen of Japanese and Eouropean honey bees. Appl Entomol Zool 29:464–467. doi:10.1303/aez.29.464 Google Scholar
  41. Yoshida T, Saito J, Kajigaya N (1994) The mating flight times of native Apis cerana japonica Radoszkowski and introduced Apis mellifera L. in sympatric conditions. Apidologie 25:353–360. doi:10.1051/apido:19940401 CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2017

Authors and Affiliations

  • R. Gloag
    • 1
  • K. Tan
    • 2
  • Y. Wang
    • 2
  • W. Song
    • 2
  • W. Luo
    • 2
  • G. Buchman
    • 1
  • M. Beekman
    • 1
  • B. P. Oldroyd
    • 1
  1. 1.Behaviour and Genetics of Social Insects Laboratory, School of Life and Environment Sciences, Macleay Building A12University of SydneySydneyAustralia
  2. 2.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina

Personalised recommendations