Insectes Sociaux

, Volume 63, Issue 4, pp 553–563 | Cite as

Honey bee sociometry: tracking honey bee colonies and their nest contents from colony founding until death

Research Article

Abstract

Sociometry is the description and analysis of the physical and numerical attributes of social insect colonies over their lifetimes. Sociometric data, such as worker number and nest size are essential for understanding how colonies develop but are rarely collected. Even Apis mellifera, the most intensively studied social insect, has never received a broad-scale sociometric study. To help fill this gap, we monitored four honey bee colonies living in large observation hives from when they began as swarms (July 2012), to when they died (January 2014). We tracked multiple colony parameters, including worker and drone populations, comb area and use, swarming rate, and colony death. Each colony’s life history is described through its founding, ergonomic, and reproductive stages.

Keywords

Growth and development Tracking developmental changes Colony morphology Lifetime reproductive investment Social insects 

References

  1. Allen MD (1958) Drone brood in honey bee colonies. J Econ Entomol 51:46–48. doi:10.1093/jee/51.1.46 CrossRefGoogle Scholar
  2. Allen MD (1965) The production of queen cups and queen cells in relation to the general development of honeybee colonies, and its connection with swarming and supersedure. J Apic Res 4:121–141. doi:10.1080/00218839.1965.11100115 CrossRefGoogle Scholar
  3. Avitabile A (1978) Brood rearing in honeybee colonies from late autumn to early spring. J Apic Res 17:69–73. doi:10.1080/00218839.1978.11099905 CrossRefGoogle Scholar
  4. Berg S, Koeniger N, Koeniger G, Fuchs S (1997) Body size and reproductive success of drones (Apis mellifera L). Apidologie 28:449–460. doi:10.1051/apido:19970611 CrossRefGoogle Scholar
  5. Bodenheimer FS, Ben-Nerya A (1937) One year studies on the biology of the honey-bee in Palestine. Ann Appl Biol 24:385–403. doi:10.1111/j.1744-7348.1937.tb05041.x CrossRefGoogle Scholar
  6. Boes KE (2010) Honeybee colony drone production and maintenance in accordance with environmental factors: an interplay of queen and worker decisions. Insectes Soc 57:1–9. doi:10.1007/s00040-009-0046-9 CrossRefGoogle Scholar
  7. Farrar CL (1937) The influence of colony populations on honey production. J Agric Res 54:945–954Google Scholar
  8. Fell RD, Ambrose JT, Burgett DM et al (1977) Seasonal cycle of swarming in honeybees. J Apic Res 16:170–173. doi:10.1080/00218839.1977.11099883 CrossRefGoogle Scholar
  9. Free JB (1957) The food of adult drone honeybees (Apis mellifera). Brit J Anim Behav 1:14–18. doi:10.1016/S0950-5601(57)80038-0 Google Scholar
  10. Free JB, Racey PA (1968) The effect of the size of honeybee colonies on food consumption, brood rearing and the longevity of the bees during winter. Entomol Exp Appl 11:241–249. doi:10.1007/BF00305232 CrossRefGoogle Scholar
  11. Grozinger CM, Richards J, Mattila HR (2013) From molecules to societies: mechanisms regulating swarming behavior in honey bees (Apis spp.). Apidologie 45:327–346. doi:10.1007/s13592-013-0253-2 CrossRefGoogle Scholar
  12. Lee PC, Winston ML (1985) The effect of swarm size and date of issue on comb construction in newly founded colonies of honeybees (Apis mellifera L.). Can J Zool 63:524–527. doi:10.1139/z85-077 CrossRefGoogle Scholar
  13. Lee PC, Winston ML (1987) Effects of reproductive timing and colony size on the survival, offspring colony size and drone production in the honey bee (Apis mellifera). Ecol Entomol 12:187–195. doi:10.1111/j.1365-2311.1987.tb00997.x CrossRefGoogle Scholar
  14. Loftus JC, Smith ML, Seeley TD (2016) How honey bee colonies survive in the wild: testing the importance of small nests and frequent swarming. PLoS ONE 11:e0150362. doi:10.1371/journal.pone.0150362 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Macevicz S, Oster G (1976) Modeling social insect populations II: optimal reproductive strategies in annual eusocial insect colonies. Behav Ecol Sociobiol 1:265–282. doi:10.1007/BF00300068 CrossRefGoogle Scholar
  16. Martin H, Lindauer M (1966) Sinnesphysiologische Leistungen beim Wabenbau der Honigbiene. Z Vergl Physiol 53:372–404. doi:10.1007/BF00298103 CrossRefGoogle Scholar
  17. McNally LC, Schneider SS (1992) Seasonal cycles of growth, development and movement of the African honey bee, Apis mellifera scutellata, in Africa. Insectes Soc 39:167–179. doi:10.1007/BF01249292 CrossRefGoogle Scholar
  18. Mitchell C (1970) Weights of workers and drones. Am Bee J 110:468–469Google Scholar
  19. Murdock TC, Tschinkel WR (2015) The life history and seasonal cycle of the ant, Pheidole morrisi Forel, as revealed by wax casting. Insectes Soc 62:265–280. doi:10.1007/s00040-015-0403-9 CrossRefGoogle Scholar
  20. Nolan WJ (1925) The brood-rearing cycle of the honeybee. United States Dep Agric Dep Bull 1349:1–56Google Scholar
  21. Oster GF, Wilson EO (1978) Caste and Ecology in the Social Insects. Princeton University Press, PrincetonGoogle Scholar
  22. Otis GW (1982) Weights of worker honeybees in swarms. J Apic Res 21:88–92. doi:10.1080/00218839.1982.11100520 CrossRefGoogle Scholar
  23. Pratt SC (1999) Optimal timing of comb construction by honeybee (Apis mellifera) colonies: a dynamic programming model and experimental tests. Behav Ecol Sociobiol 46:30–42. doi:10.1007/s002650050589 CrossRefGoogle Scholar
  24. Rangel J, Seeley TD (2012) Colony fissioning in honey bees: size and significance of the swarm fraction. Insectes Soc 59:453–462. doi:10.1007/s00040-012-0239-5 CrossRefGoogle Scholar
  25. Schluns H, Schluns EA, van Praagh J, Moritz RFA (2003) Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie 34:577–584. doi:10.1051/apido CrossRefGoogle Scholar
  26. Seeley TD (1978) Life history strategy of the honey bee, Apis mellifera. Oecologia 32:109–118. doi:10.1007/BF00344695 CrossRefGoogle Scholar
  27. Seeley TD (1995) The wisdom of the hive. Harvard University Press, CambridgeGoogle Scholar
  28. Seeley TD (2002) The effect of drone comb on a honey bee colony’s production of honey. Apidologie 33:75–86. doi:10.1051/apido CrossRefGoogle Scholar
  29. Seeley, TD (2007) Honey bees of the Arnot Forest: a population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38(1):19–29. doi:10.1051/apido:2006055 CrossRefGoogle Scholar
  30. Seeley TD, Mikheyev AS (2003) Reproductive decisions by honey bee colonies: tuning investment in male production in relation to success in energy acquisition. Insectes Soc 50:134–138. doi:10.1007/s00040-003-0638-8 CrossRefGoogle Scholar
  31. Seeley TD, Morse RA (1976) The nest of the honey bee (Apis mellifera L.). Insectes Soc 23:495–512. doi:10.1007/BF02223477 CrossRefGoogle Scholar
  32. Seeley TD, Tautz J (2001) Worker piping in honey bee swarms and its role in preparing for liftoff. J Comp Physiol A 187:667–676. doi:10.1007/s00359-001-0243-0 CrossRefPubMedGoogle Scholar
  33. Seeley TD, Visscher P (1985) Survival of honeybees in cold climates: the critical timing of colony growth and reproduction. Ecol Entomol 10:81–88. doi:10.1111/j.1365-2311.1985.tb00537.x CrossRefGoogle Scholar
  34. Smith ML, Ostwald MM, Loftus JC, Seeley TD (2014) A critical number of workers in a honeybee colony triggers investment in reproduction. Naturwissenschaften 101:783–790. doi:10.1007/s00114-014-1215-x CrossRefPubMedGoogle Scholar
  35. Smith ML, Ostwald MM, Seeley TD (2015) Adaptive tuning of an extended phenotype: honeybees seasonally shift their honey storage to optimize male production. Anim Behav 103:29–33. doi:10.1016/j.anbehav.2015.01.035 CrossRefGoogle Scholar
  36. Southwick EE (1983) The honey bee cluster as a homeothermic superorganism. Comp Biochem Physiol Part A Physiol 75:641–645. doi:10.1016/0300-9629(83)90434-6 CrossRefGoogle Scholar
  37. Starr CK (2006) Steps toward a general theory of the colony cycle in social insects. In: Kipyatkov VE (ed) Life cycles Soc insects Behav Ecol Evol St. Petersburg University Press, Petersburg, pp 1–20Google Scholar
  38. Taber S, Owens CD (1970) Colony founding and initial nest design of honey bees, Apis mellifera L. Anim Behav 18:625–632. doi:10.1016/0003-3472(70)90005-9 CrossRefGoogle Scholar
  39. Tschinkel WR (1991) Insect sociometry, a field in search of data. Insectes Soc 38:77–82. doi:10.1007/BF01242715 CrossRefGoogle Scholar
  40. Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol Soc Am 63:425–457. doi:10.2307/2937154 Google Scholar
  41. Tschinkel WR (1998) Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: worker characteristics in relation to colony size and season. Insectes Soc 45:385–410. doi:10.1007/s000400050097 CrossRefGoogle Scholar
  42. Wilson EO (1985) The sociogenesis of insect colonies. Science 228:1489–1495CrossRefPubMedGoogle Scholar
  43. Winston ML (1979) Intra-colony demography and reproductive rate of the Africanized honeybee in South America. Behav Ecol Sociobiol 4:279–292. doi:10.1007/BF00297648 CrossRefGoogle Scholar
  44. Winston ML (1980a) Seasonal patterns of brood rearing and worker longevity in colonies of the Africanized honey bee (Hymenoptera: Apidae) in South America. J Kansas Entomol Soc 53:157–165Google Scholar
  45. Winston ML (1980b) Swarming, afterswarming, and reproductive rate of unmanaged honeybee colonies (Apis mellifera). Insectes Soc 27:391–398. doi:10.1007/BF02223731 CrossRefGoogle Scholar
  46. Winston ML, Dropkin JA, Taylor OR (1981) Demography and life-history characteristics of two honey bee races (Apis mellifera). Oecologia 48:407–413. doi:10.1007/BF00346502 CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations