Insectes Sociaux

, Volume 63, Issue 4, pp 493–500

Variable patterns of intraspecific sexual size dimorphism and allometry in three species of eusocial corbiculate bees

  • Rubén Guillermo Medina
  • Daphne Janice Fairbairn
  • Arturo Bustillos
  • Humberto Moo-Valle
  • Salvador Medina
  • José Javier Guadalupe Quezada-Euán
Research Article


Sexual size dimorphism (SSD), in which one sex is larger than the other, has remained understudied in social insects, particularly bees. Using weight and linear structural measurements, we quantified the magnitude of SSD and its variation across nests in three species of corbiculate bees, two belonging to the highly eusocial Apini (Apis mellifera) and Meliponini (Melipona beecheii), and one to the primitively eusocial Euglossini (Euglossa viridissima). We asked if similar to most insects, including Hymenoptera, SSD is female-biased in these eusocial species. Contrary to expectations, we found that SSD was moderately male-biased in the two highly eusocial species and slightly male-biased for weight and not significant for linear size in E. viridissima. The possible roles of queen protogyny and reduced brood provisioning by queens in shaping these patterns of SSD are discussed. The allometry of SSD among nests differed among species as well, ranging from hypoallometry in A. mellifera, to isometry in M. beecheii, to hyperallometry in E. viridissima. This variation indicates that the phenotypic response of body size to differing conditions across nests differs both between sexes and among species. The variation detected among the three studied species in both SSD and allometry for SSD precludes any broad generalizations to other corbiculate bees. However, it does suggest that corbiculate bees can provide a new and diverse framework to analyze the effects of social environment on the evolution of animal sexual dimorphism.


Body size Sexual dimorphism Allometry Social insect Bee 

Supplementary material

40_2016_491_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Beani L, Dessì-Fulgheri F, Toth A (2014) The trap of sex in social insects: from the female to the male perspective. Neurosc Biobehav Rev 46:519–533CrossRefGoogle Scholar
  2. Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Quart Rev Biol 75:385–407CrossRefPubMedGoogle Scholar
  3. Blanckenhorn WU (2005) Behavioral causes and consequences of sexual size dimorphism. Ethology 111:977–1016CrossRefGoogle Scholar
  4. Blanckenhorn WU, Dixon AF, Fairbairn DJ, Foellmer MW, Gibert P, van der Linde K, Meier R, Pitnick S, Schoff C, Signorelli M, Teder T, Wiklund C (2007) Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am Nat 169:245–257CrossRefPubMedGoogle Scholar
  5. Blanckenhorn WU, Stillwell RC, Young KA, Fox CW, Ashton KG (2006) When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution 60:2004–2011CrossRefPubMedGoogle Scholar
  6. Blanckenhorn W U, Meier R, Teder T (2007a) Rensch’s rule in insects: patterns among and within species. In:Fairbairn D J, Blanckenhorn W U, Sz´ekely T (eds) Sex, size & gender roles. Evolutionary studies of sexual size dimorphism. Oxford Univ Press, Oxford, U K. pp. 60–70Google Scholar
  7. Boomsma JJ, Baer B, Heinze J (2005) The evolution of male traits in social insects. Annu Rev Entomol 50:395–420CrossRefPubMedGoogle Scholar
  8. Bullock SH (1999) Relationships among body size, wing size and mass in bees from a Tropical Dry Forest in México. J Kansas Entomol Soc 72:426–439Google Scholar
  9. Cocom-Pech M E, May-Itzá W d J, Medina Medina L A, Quezada-Euán JJG (2008) Sociality in Euglossa (Euglossa) viridissima Friese (Hymenoptera, Apidae, Euglossini). Insect Soc 55:428–433Google Scholar
  10. Cueva del Castillo R, Fairbairn DJ (2012) Macroevolutionary patterns on bumblebee body size: detecting the interplay between natural and sexual selection. Ecol Evol 2:46–57CrossRefGoogle Scholar
  11. Cueva del Castillo R, Sanabria-Urbán S, Serrano-Meneses MA (2015) Trade-offs in the evolution of bumblebee colony and body size: a comparative analysis. Ecol Evol 5:3914–3926CrossRefPubMedPubMedCentralGoogle Scholar
  12. Duchateau JM, Velthuis HHW (1988) Development and reproductive strategies in Bombus terrestris colonies. Behaviour 107:186–207CrossRefGoogle Scholar
  13. Eltz T, Bause C, Hund K, Quezada-Euan JJG, Pokorny T (2015) Correlates of perfume load in male orchid bees. Chemoecology 25:193–199CrossRefGoogle Scholar
  14. Fairbairn DJ (1997) Allometry for sexual size dimorphism: patterns and process in the coevolution of body size in females and males. Annu Rev Ecol Syst 28:659–687CrossRefGoogle Scholar
  15. Fairbairn DJ (2005) Allometry for Sexual Size Dimorphism: testing Two Hypotheses for Rensch’s Rule in the Water Strider Aquarius remigis. Am Nat 6:S69–S84CrossRefGoogle Scholar
  16. Fairbairn DJ (2013) Odd couples: extraordinary differences between the sexes in the animal kingdom. Princeton University Press, Princeton and OxfordCrossRefGoogle Scholar
  17. Fairbairn DJ, Blanckenhorn WU, Székely T (2007) Sex. Oxford Univ Press, Oxford, U K, Size & Gender roles. Evolutionary studies of sexual size dimorphismGoogle Scholar
  18. Garofalo CA, Zucchi R, Muccillo G (1986) Reproductive studies of a neotropical bumblebee, Bombus atratus (Hymenoptera, Apidae). Rev Bras Genet 9:231–243Google Scholar
  19. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596CrossRefPubMedGoogle Scholar
  20. Hammer Ø., Harper D A T, Ryan P D (2001) Past: Paleontological Statistics Software package for education and data analysis. Palaeontologia Electronica 4Google Scholar
  21. Honěk A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492CrossRefGoogle Scholar
  22. Kimsey LS (1980) The behaviour of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of Leks. Anim Behav 28:996–1004CrossRefGoogle Scholar
  23. Lovich JE, Gibbons JW (1992) A review of techniques for quantifying sexual size dimorphism. Growth Dev Aging 56:269–281PubMedGoogle Scholar
  24. May-Itzá W de J, Medina Medina L A, Medina S, Paxton R J, Quezada-Euán J J G (2014) Seasonal nest characteristics of a facultatively social orchid bee, Euglossa viridissima, in the Yucatan Peninsula, Mexico. Insect Soc 61:183–190Google Scholar
  25. Michener CD (1974) The social behavior of the bees. The Belknap Press Harvard Univ Press, Massachusetts USAGoogle Scholar
  26. Michener CD (2000) The bees of the world. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  27. Moo-Valle H, Quezada-Euan JJG, Canto J, Gonzalez-Acereto JA (2004) Caste ontogeny and the distribution of reproductive cells on the combs of Melipona beecheii B (Hymenoptera: Meliponini). Apidologie 35:587–594CrossRefGoogle Scholar
  28. Moo-Valle H, Quezada-Euan J J G, Wenseleers T (2001) The effect of food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae, Meliponini) Insect Soc 48: 398-403Google Scholar
  29. Moritz RFA, Southwick EE (1992) Bees as superorganisms an evolutionary reality. Springer-Verlag, BerlinCrossRefGoogle Scholar
  30. Olsson M, Shine R, Wapstra E, Ujvari B, Madsen T (2002) Sexual dimorphism in lizard body shape: the roles of sexual selection and fecundity selection. Evolution 56:1538–1542CrossRefPubMedGoogle Scholar
  31. Paxton RJ (2005) Male mating behaviour and mating systems of bees: an overview. Apidologie 36:145–156CrossRefGoogle Scholar
  32. Pech-May FG, Medina-Medina L, May-Itzá W de J, Paxton RJ, Quezada-Euán JJG (2012) Colony pollen reserves affect body size, sperm production and sexual development in males of the stingless bee Melipona beechei. Insect Soc 59: 417–424Google Scholar
  33. Peeters C, Ito F (2015) Wingless and dwarf workers underlie the ecological success of ants (Hymenoptera: Formicidae). Myrmecological News 21:117–130Google Scholar
  34. Pincheira-Donoso D, Hunt T J (2016) Fecundity selection theory: concepts and evidence. Biol Rev doi: 10.1111/brv.12232 (in press)
  35. Preziosi RF, Fairbairn DJ (2000) Lifetime selection on body size and components of body size in a water strider: opposing selection and maintenance of sexual size dimorphism. Evolution 54:558–566CrossRefPubMedGoogle Scholar
  36. Quezada-Euán JJG, López-Velasco A, Moo-Valle H, Velazquez-Madrazo A, Paxton RJ (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect Soc 58:31–38CrossRefGoogle Scholar
  37. Quezada-Euán JJG, Paxton RJ, Palmer KA, May Itza W de J, Tek Tay W, Oldroyd BP (2007) Morphological and molecular characters reveal differentiation in a neotropical social bee, Melipona beechei (Apidae: Meliponini). Apidologie 38:1–12Google Scholar
  38. Quezada-Euán JJG; May-Itzá W de J; Montejo E; Moo-Valle H (2015) Isometric worker size variation in relation to individual foraging preference and seasonal colony growth in stingless bees. Insect Soc 62:73–78Google Scholar
  39. Roff DA (1992) The evolution of life histories: theory and analysis. Chapman and Hall, New YorkGoogle Scholar
  40. Schlüns H, Schlüns EA, van Praagh J, Moritz RFA (2003) Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie 34:577–584CrossRefGoogle Scholar
  41. Shreeves G, Field J (2008) Parental care and sexual size dimorphism in wasps and bees. Behav Ecol Sociobiol 62:843–852CrossRefGoogle Scholar
  42. Simpson SJ, Sword GA, Lo N (2007) Polyphenism in insects. Curr Biol 21:R738–R749CrossRefGoogle Scholar
  43. Singer MC (1982) Sexual selection for small size in male butterflies. Am Nat 119:440–443CrossRefGoogle Scholar
  44. Teder T (2005) Male-biased size dimorphism in ichneumonine wasps (Hymenoptera: Ichneumonidae)—the role of sexual selection for large male size. Ecol Entomol 30:342–349CrossRefGoogle Scholar
  45. Teder T, Tammaru T (2005) Sexual size dimorphism within species increases with body size in insects. Oikos 108:321–334CrossRefGoogle Scholar
  46. Webb TJ, Freckleton RP (2007) Only half right: species with female-biased sexual dimorphism consistently break Rensch’s rule. PLoS One 2:e897CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wiklund C, Solbreck C (1982) Adaptive versus incidental explanations for the occurrence of protandry in a butterfly, Leptidea sinapis L. Evolution 36:56–62CrossRefGoogle Scholar
  48. Wiley EO (1981) Phylogenetics, the theory and practice of Phylogenetic Systematics. John Wiley and Sons, Chichester U KGoogle Scholar
  49. Wilson EO (1971) The insect societies. Belknap Press of Harvard Univ Press, Massachusetts, USAGoogle Scholar
  50. Winston ML (1987) The biology of the honey bee. Harvard Univ Press, MassachusettsGoogle Scholar
  51. Zonneveld C (1996) Being big or emerging early? Polyandry and the trade-off between size and emergence in male butterflies. Am Nat 147:946–965CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  • Rubén Guillermo Medina
    • 1
  • Daphne Janice Fairbairn
    • 2
  • Arturo Bustillos
    • 1
  • Humberto Moo-Valle
    • 1
  • Salvador Medina
    • 3
  • José Javier Guadalupe Quezada-Euán
    • 1
  1. 1.Campus Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Department of BiologyUniversity of California at RiversideRiversideUSA
  3. 3.Facultad de Matemáticas-Campus de Ingenierías y Ciencias ExactasUniversidad Autónoma de Yucatán Anillo PeriféricoMéridaMexico

Personalised recommendations