Insectes Sociaux

, Volume 63, Issue 2, pp 223–236 | Cite as

Warfare in stingless bees

  • C. GrüterEmail author
  • L. G. von Zuben
  • F. H. I. D. Segers
  • J. P. Cunningham
Review Article


Bees are well known for being industrious pollinators. Some species, however, have taken to invading the nests of other colonies to steal food, nest material or the nest site itself. Despite the potential mortality costs due to fighting with an aggressive opponent, the prospects of a large bounty can be worth the risk. In this review, we aim to bring together current knowledge on intercolony fighting with a view to better understand the evolution of warfare in bees and identify avenues for future research. A review of literature reveals that at least 60 species of stingless bees are involved in heterospecific conflicts, either as attacking or victim colonies. The threat of invasion has led to the evolution of architectural, behavioural and morphological adaptations, such as narrow entrance tunnels, mud balls to block the entrance, decoy nests that direct invaders away from the brood chamber, fighting swarms, and soldiers that are skilled at immobilising attackers. Little is known about how victim colonies are selected, but a phylogenetically controlled analysis suggests that the notorious robber bee Lestrimelitta preferentially attacks colonies of species with more concentrated honey. Warfare among bees poses many interesting questions, including why species differ so greatly in their response to attacks and how these alternative strategies of obtaining food or new nest sites have evolved.


Stingless bees Warfare Alternative foraging strategies Cleptoparasitism Lestrimelitta Meliponini 



We would like to thank Denise Alves, Sidnei Mateus, Cristiano Menezes, Fabio Nascimento, Paulo Nogueira-Neto, Francis Ratnieks and Ayrton Vollet-Neto for many stimulating discussions about stingless bee colony defence. C.G. was funded by a Science without Borders fellowship from the Brazilian CNPq (Process-number: 400664/2012-7) and an Ambizione Fellowship from the Swiss National Science Foundation (PZOOP3_142628/1). L.v.Z. was funded by CNPq (Process-number: 159724/2012-0).

Supplementary material

40_2016_468_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Al Toufailia HM, Grüter C, Ratnieks FLW (2013) Persistence to unrewarding feeding locations by honeybee foragers (Apis mellifera): the effects of experience, resource profitability and season. Ethology 119:1096–1106CrossRefGoogle Scholar
  2. Bego LR, Zucchi R, Mateus S (1991) Notas sobre a estratégia alimentar: Cleptobiose de Lestrimelitta limao Smith (Hymenoptera, Apidae, Meliponinae). Naturalia 16:119–127Google Scholar
  3. Biesmeijer JC, Slaa EJ, Koedam D (2007) How stingless bees solve traffic problems. Entomologische Berichten-Nederlandsche Entomologische Vereenigung 67:7–13Google Scholar
  4. Blum MS, Crewe RM, Kerr WE, Keith LH, Garrison AW, Walker MM (1970) Citral in stingless bees: isolation and functions in trail-laying and robbing. J Insect Physiol 16:1637–1648CrossRefPubMedGoogle Scholar
  5. Bowden RM, Garry MF, Breed MD (1994) Discrimination of con- and heterospecific bees by Trigona (Tetragonisca) angustula guards. J Kansas Entomol Soc 67:137–139Google Scholar
  6. Breed MD, Cook CN, Krasnec MO (2012) Cleptobiosis in social insects. Psyche 2012:484765CrossRefGoogle Scholar
  7. Camargo JM, Pedro SR (2003) Neotropical Meliponini: the genus Partamona Schwarz, 1939 (Hymenoptera, Apidae, Apinae)-bionomy and biogeography. Rev Bras Entomol 47:311–372Google Scholar
  8. Camargo JM, Pedro SR (2007) Notes on the bionomy of Trichotrigona extranea Camargo and Moure (Hymenoptera, Apidae, Meliponini). Rev Bras Entomol 51:72–81CrossRefGoogle Scholar
  9. Camargo JM, Pedro SR (2008) Revision of the species of Melipona of the fuliginosa group (Hymenoptera, Apoidea, Apidae, Meliponini). Rev Bras Entomol 52:411–427CrossRefGoogle Scholar
  10. Camargo JMF, Pedro SRM (2013) Meliponini Lepeletier, 1836. In: Moure JS, Urban D, Melo GAR (orgs). Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region—online version.
  11. Couvillon MJ, Wenseleers T, Imperatriz-Fonseca VL, Nogueira-Neto P, Ratnieks FLW (2008) Comparative study in stingless bees (Meliponini) demonstrates that nest entrance size predicts traffic and defensivity. J Evol Biol 21:194–201PubMedGoogle Scholar
  12. Couvillon MJ, Segers FHID, Cooper-Bowman R, Truslove G, Nascimento DL, Nascimento FS, Ratnieks FLW (2013) Context affects nestmate recognition errors in honey bees and stingless bees. J Exp Biol 216:3055–3061CrossRefPubMedGoogle Scholar
  13. Cruz-López L, Aguilar S, Malo E, Rincón M, Guzman M, Rojas J (2007) Electroantennogram and behavioral responses of workers of the stingless bee Oxytrigona mediorufa to mandibular gland volatiles. Entomol Exp Appl 123:43–47CrossRefGoogle Scholar
  14. Cunningham JP, Hereward JP, Heard TA, De Barro PJ, West SA (2014) Bees at war: interspecific battles and nest usurpation in stingless bees. Am Nat 184:777–786CrossRefPubMedGoogle Scholar
  15. D’Ettorre P, Errard C, Ibarra F, Francke W, Hefetz A (2000) Sneak in or repel your enemy: Dufour’s gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142CrossRefGoogle Scholar
  16. D’Ettorre P, Wenseleers T, Dawson J, Hutchinson S, Boswell T, Ratnieks FLW (2006) Wax combs mediate nestmate recognition by guard honeybees. Anim Behav 71:773–779CrossRefGoogle Scholar
  17. Downs SG, Ratnieks FLW (2000) Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model. Behav Ecol 11:326–333CrossRefGoogle Scholar
  18. Eardley C (2004) Taxonomic revision of the African stingless bees (Apoidea: Apidae: Apinae: Meliponini). Afr Plant protect 10:63–96Google Scholar
  19. Foitzik S, Heinze J (1998) Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav Ecol 9:367–375CrossRefGoogle Scholar
  20. Friese H (1931) Wie können Schmarotzerbienen aus Sammelbienen entstehen. Zool Jahr Abt Syst Geog Biol Tiere 62:1–14Google Scholar
  21. Gloag R, Heard T, Beekman M, Oldroyd B (2008) Nest defence in a stingless bee: what causes fighting swarms in Trigona carbonaria (Hymenoptera, Meliponini)? Insect Soc 55:387–391CrossRefGoogle Scholar
  22. Gonzalez VH, Griswold T (2012) New species and previously unknown males of neotropical cleptobiotic stingless bees (Hymenoptera, Apidae, Lestrimelitta). Caldasia 34:227–245Google Scholar
  23. Gonzalez VH, Rasmussen C, Velasquez A (2010) Una especie nueva de Lestrimelitta y un cambio de nombre en Lasioglossum (Hymenoptera: Apidae, Halictidae). Rev Colomb Entomol 36:319–324Google Scholar
  24. Grüter C, Kärcher M, Ratnieks FLW (2011) The natural history of nest defence in a stingless bee, Tetragonisca angustula (Latreille) (Hymenoptera: Apidae), with two distinct types of entrance guards. Neotrop Entomol 40:55–61CrossRefPubMedGoogle Scholar
  25. Grüter C, Menezes C, Imperatriz-Fonseca VL, Ratnieks FLW (2012) A morphologically specialized soldier caste improves colony defence in a Neotropical eusocial bee. Proc Nat Acad Sci USA 109:1182–1186CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guillem RM, Drijfhout F, Martin SJ (2014) Chemical deception among ant social parasites. Curr Zool 60:62–75CrossRefGoogle Scholar
  27. Hamilton IM (2002) Kleptoparasitism and the distribution of unequal competitors. Behav Ecol 13:260–267CrossRefGoogle Scholar
  28. Hammel B, Vollet-Neto A, Menezes C, Nascimento FS, Engels W, Grüter C (2016) Soldiers in a stingless bee: work rate and task repertoire suggest guards are an elite force. Am Nat 187:120–129CrossRefGoogle Scholar
  29. Heard TA (1996) The stingless bees. Nat Aust 1996:50–55Google Scholar
  30. Hölldobler B (1976) Tournaments and slavery in a desert ant. Science 192:912–914CrossRefPubMedGoogle Scholar
  31. Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. W. W. Norton & Company, New YorkGoogle Scholar
  32. Hubbell SP, Johnson LK (1977) Competition and nest spacing in a tropical stingless bee community. Ecology 58:949–963CrossRefGoogle Scholar
  33. Iyengar EV (2008) Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol J Linn Soc 93:745–762CrossRefGoogle Scholar
  34. Jarau S, Hrncir M, Zucchi R, Barth F (2004) A stingless bee uses labial gland secretions for scent trail communication (Trigona recursa Smith 1863). J Comp Physiol A 190:233–239CrossRefGoogle Scholar
  35. Jarau S, Schulz CM, Hrncir M, Francke W, Zucchi R, Barth FG, Ayasse M (2006) Hexyl decanoate, the first trail pheromone compound identified in a stingless bee, Trigona recursa. J Chem Ecol 32:1555–1564CrossRefPubMedGoogle Scholar
  36. Jarau S, Dambacher J, Twele R, Aguilar I, Francke W, Ayasse M (2010) The trail pheromone of a stingless bee, Trigona corvina (Hymenoptera, Apidae, Meliponini), varies between populations. Chem Senses 35:593–601CrossRefPubMedGoogle Scholar
  37. Johnson LK (1987) The pyrrhic victory of nest-robbing bees: did they use the wrong pheromone? Biotropica 19:188–189CrossRefGoogle Scholar
  38. Jones SM et al (2012) The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav Ecol Sociobiol 66:1–12CrossRefGoogle Scholar
  39. Kärcher M, Ratnieks FLW (2009) Standing and hovering guards of the stingless bee Tetragonisca angustula complement each other in entrance guarding and intruder recognition. J Apic Res 48:209–214CrossRefGoogle Scholar
  40. Kerr WE (1951) Bases para o estudo da genética de populações dos Hymenoptera em geral e dos Apinae sociais em particular. Anais da Escola Superior de Agricultura Luiz de Queiroz 8:219–354CrossRefGoogle Scholar
  41. Kerr WE (1984) Virgilio de Portugal Brito Araújo (1919–1983). Acta Amazonica 13:327–328Google Scholar
  42. Laroca S, Orth A (1984) Pilhagem de um ninho de Plebeia catamarcensis meridionalis por Lestrimelitta limao (Apidae, Meliponinae) em Itapiranga, SC, Sul do Brasil. Dusenia 14:123–127Google Scholar
  43. Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Ann Rev Entomol 46:573–599CrossRefGoogle Scholar
  44. Lichtenberg EM, Hrncir M, Turatti IC, Nieh JC (2011) Olfactory eavesdropping between two competing stingless bee species. Behav Ecol Sociobiol 65:763–774CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lichtenberg EM, Graff Zivin J, Hrncir M, Nieh JC (2014) Eavesdropping selects for conspicuous signals. Curr Biol 24:R598–R599CrossRefPubMedGoogle Scholar
  46. Lima FVO, Silvestre R, Balestieri JBP (2013) Nest entrance types of stingless bees (Hymenoptera: Apidae) in a tropical dry forest of Mid-Western Brazil. Sociobiology 60:421–428CrossRefGoogle Scholar
  47. Lindström A, Korpela S, Fries I (2008) Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie 39:515–522CrossRefGoogle Scholar
  48. Martin SJ, Vitikainen E, Drijfhout FP, Jackson D (2012) Conspecific ant aggression is correlated with chemical distance, but not with genetic or spatial distance. Behav Genet 42:323–331CrossRefPubMedGoogle Scholar
  49. McGlynn TP (2000) Do Lanchester’s laws of combat describe competition in ants? Behav Ecol 11:686–690CrossRefGoogle Scholar
  50. Michener CD (1946) Notes on the habits of some Panamanian stingless bees (Hymenoptera, Apidae). J N Y Entomol Soc 54:179–197Google Scholar
  51. Michener CD (1974) The social behavior of the bees. Harvard University Press, CambridgeGoogle Scholar
  52. Michener CD (2007) The bees of the world, 2nd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  53. Moure JS, Nogueira-Neto P, Kerr WE (1958) Evolutionary problems among Meliponinae (Hymenoptera, Apidae). Proc Xth Int Congr Entomol 2:481–493Google Scholar
  54. Müller F (1874) The habits of various insects. Nature 10:102–103CrossRefGoogle Scholar
  55. Nieh J, Kruizinga K, Barreto L, Contrera F, Imperatriz-Fonseca V (2005) Effect of group size on the aggression strategy of an extirpating stingless bee, Trigona spinipes. Insect Soc 52:147–154CrossRefGoogle Scholar
  56. Nogueira-Neto P (1970) Behavior problems related to the pillages made by some parasitic stingless bees (Meliponinae, Apidae). In: Aronson LR (ed) Development and evolution of behavior: essays in memory of TC Schneirla. W. H. Freeman, San Francisco, pp 416–434Google Scholar
  57. Nogueira-Neto P (1997) Vida e Criação de Abelhas Indígenas Sem Ferrão. Editora Nogueirapis, São PauloGoogle Scholar
  58. Nunes TM, Nascimento FS, Turatti IC, Lopes NP, Zucchi R (2008) Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim Behav 75:1165–1171CrossRefGoogle Scholar
  59. Nunes TM, von Zuben LG, Costa L, Venturieri GC (2014) Defensive repertoire of the stingless bee Melipona flavolineata Friese (Hymenoptera: Apidae). Sociobiology 61:541–546CrossRefGoogle Scholar
  60. Paradis E (2011) Analysis of phylogenetics and evolution with R. Springer Science and Business Media, BerlinGoogle Scholar
  61. Pohl S, Foitzik S (2011) Slave-making ants prefer larger, better defended host colonies. Anim Behav 81:61–68CrossRefGoogle Scholar
  62. Pompeu M, Silveira F (2005) Reaction of Melipona rufiventris Lepeletier to citral and against an attack by the cleptobiotic bee Lestrimelitta limao (Smith) (Hymenoptera: Apidae: Meliponina). Brazil J Biol 65:189–191CrossRefGoogle Scholar
  63. Portugal-Araújo V (1958) A contribution to the bionomics of Lestrimelitta cubiceps (Hymenoptera, Apidae). J Kansas Entomol Soc 31:203–211Google Scholar
  64. Quezada-Euán JJG, González-Acereto J (2002) Notes on the nest habits and host range of cleptobiotic Lestrimelitta niitkib (Ayala 1999) (Hymenoptera: Meliponini) from the Yucatan Peninsula, Mexico. Acta Zoológica Mexicana 86:245–249Google Scholar
  65. Quezada-Euán JJG, López-Velasco A, Pérez-Balam J, Moo-Valle H, Velazquez-Madrazo A, Paxton RJ (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect Soc 58:31–38CrossRefGoogle Scholar
  66. Quezada-Euán JJG, Ramírez J, Eltz T, Pokorny T, Medina R, Monsreal R (2013) Does sensory deception matter in eusocial obligate food robber systems? A study of Lestrimelitta and stingless bee hosts. Anim Behav 85:817–823CrossRefGoogle Scholar
  67. Ramalho M, Imperatriz-Fonseca VL, Giannini TC (1998) Within-colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier. Apidologie 29:221–228CrossRefGoogle Scholar
  68. Ramírez SR, Nieh JC, Quental TB, Roubik DW, Imperatriz-Fonseca VL, Pierce NE (2010) A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae). Mol Phylog Evol 56:519–525CrossRefGoogle Scholar
  69. Rangel J, Griffin SR, Seeley TD (2010) Nest-site defense by competing honey bee swarms during house-hunting. Ethology 116:608–618Google Scholar
  70. Rasmussen C, Cameron S (2010) Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol J Linn Soc 99:206–232CrossRefGoogle Scholar
  71. Rech AR, Schwade MA, Schwade MRM (2013) Abelhas-sem-ferrão amazônicas defendem meliponários contra saques de outras abelhas. Acta Amazonica 43:389–394CrossRefGoogle Scholar
  72. Ribbands CR (1949) The foraging method of individual honey-bees. J Anim Ecol 18:47–66CrossRefGoogle Scholar
  73. Rinderer TE et al (1988) Nest plundering allomones of the fire bee Trigona (Oxitrigona) mellicolor. J Chem Ecol 14:495–501CrossRefPubMedGoogle Scholar
  74. Roubik DW (1979) Nest and colony characteristics of stingless bees from French Guiana (Hymenoptera: Apidae). J Kansas Entomol Soc 52:443–470Google Scholar
  75. Roubik DW (1983) Nest and colony characteristics of stingless bees from Panama (Hymenoptera: Apidae). J Kansas Entomol Soc 56:327–355Google Scholar
  76. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New YorkCrossRefGoogle Scholar
  77. Roubik DW (2006) Stingless bee nesting biology. Apidologie 37:124–143CrossRefGoogle Scholar
  78. Sakagami SF (1982) Stingless bees. In: Hermann HR (ed) Social insects III. Academic Press, New York, pp 361–423Google Scholar
  79. Sakagami SF, Laroca S (1963) Additional observations on the habits of the cleptobiotic stingless bees, the genus Lestrimelitta friese (Hymenoptera, Apoidea). J Fac Sci Hokkaido Univ 15:319–339Google Scholar
  80. Sakagami S, Roubik D, Zucchi R (1993) Ethology of the robber stingless bee, Lestrimelitta limao (Hymenoptera: Apidae). Sociobiology 21:237–277Google Scholar
  81. Schorkopf DLP et al (2007) Spitting out information: Trigona bees deposit saliva to signal resource locations. Proc R Soc Lond Ser B Biol Sci 274:895–898CrossRefGoogle Scholar
  82. Schorkopf DLP, Hrncir M, Mateus S, Zucchi R, Schmidt VM, Barth FG (2009) Mandibular gland secretions of meliponine worker bees: further evidence for their role in interspecific and intraspecific defence and aggression and against their role in food source signalling. J Exp Biol 212:1153–1162CrossRefPubMedGoogle Scholar
  83. Schwarz HF (1948) Stingless bees (Meliponidae) of the western hemisphere. B Am Mus Nat Hist 90:1–546Google Scholar
  84. Segers FHID, Menezes C, Vollet-Neto A, Lambert D, Grüter C (2015) Soldier production in a stingless bee depends on rearing location and nurse behaviour. Behav Ecol Sociobiol 69:613–623CrossRefGoogle Scholar
  85. Segers FHID, Von Zuben LG, Grüter C (2016) Local differences in parasitism and competition shape defensive investment in a polymorphic eusocial bee. Ecology (in press)Google Scholar
  86. Shackleton K, Al Toufailia H, Balfour NJ, Nascimento FS, Alves DA, Ratnieks FL (2015) Appetite for self-destruction: suicidal biting as a nest defense strategy in Trigona stingless bees. Behav Ecol Sociobiol 69:273–281CrossRefPubMedPubMedCentralGoogle Scholar
  87. Shorter J, Rueppell O (2012) A review on self-destructive defense behaviors in social insects. Insect Soc 59:1–10CrossRefGoogle Scholar
  88. Stangler ES, Jarau S, Hrncir M, Zucchi R, Ayasse M (2009) Identification of trail pheromone compounds from the labial glands of the stingless bee Geotrigona mombuca. Chemoecology 19:13–19CrossRefGoogle Scholar
  89. Tóth E, Queller DC, Dollin A, Strassmann JE (2004) Conflict over male parentage in stingless bees. Insect Soc 51:1–11CrossRefGoogle Scholar
  90. Tsuneoka Y, Akino T (2009) Repellent effect on host Formica workers of queen Dufour’s gland secretion of the obligatory social parasite ant, Polyergus samurai (Hymenoptera: Formicidae). Appl Entomol Zool 44:133–141CrossRefGoogle Scholar
  91. von Zuben LG, Schorkopf DLP, Elias LG, Vaz ALL, Favaris AP, Clososki GC, Bento JMS, Nunes TM. Interspecific chemical communication in raids of the robber bee Lestrimelitta limao Smith (1863) (Hymenoptera: Apidae: Meliponini). Insect. Soc (in press)Google Scholar
  92. van Zweden JS, Grüter C, Jones SM, Ratnieks FLW (2011) Hovering guards of the stingless bee Tetragonisca angustula increase colony defensive perimeter as shown by intra- and inter-specific comparisons. Behav Ecol Sociobiol 65:1277–1282CrossRefGoogle Scholar
  93. Veiga JC, Menezes C, Venturieri GC, Contrera FAL (2013) The bigger, the smaller: relationship between body size and food stores in the stingless bee Melipona flavolineata. Apidologie 44:324–333CrossRefGoogle Scholar
  94. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar
  95. Whitehouse MEA, Jaffe K (1996) Ant wars: combat strategies, territory and nest defence in the leaf-cutting ant Atta laevigata. Anim Behav 51:1207–1217CrossRefGoogle Scholar
  96. Wittmann D (1985) Aerial defense of the nest by workers of the stingless bee Trigona (Tetragonisca) angustula. Behav Ecol Sociobiol 16:111–114CrossRefGoogle Scholar
  97. Wittmann D, Radtke R, Zeil J, Lübke G, Francke W (1990) Robber bees (Lestrimelitta limao) and their host: chemical and visual cues in nest defense by Trigona (Tetragonisca) angustula (Apidae: Meliponinae). J Chem Ecol 16:631–641CrossRefPubMedGoogle Scholar
  98. Zimma B, Ayasse M, Tengö J, Ibarra F, Schulz C, Francke W (2003) Do social parasitic bumblebees use chemical weapons? (Hymenoptera, Apidae). J Comp Physiol A 189:769–775CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2016

Authors and Affiliations

  • C. Grüter
    • 1
    • 2
    Email author
  • L. G. von Zuben
    • 1
    • 3
  • F. H. I. D. Segers
    • 4
  • J. P. Cunningham
    • 5
  1. 1.Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
  2. 2.Institute of ZoologyJohannes Gutenberg University MainzMainzGermany
  3. 3.Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  4. 4.Department of Fundamental Microbiology, BiophoreUniversity of LausanneLausanneSwitzerland
  5. 5.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations