Colony size evolution in ants: macroevolutionary trends

Abstract

Colony size is an incredibly important factor in social insect ecology: it affects everything from foraging strategies to colony defense to mating systems to the degree of polymorphism. However, colony sizes vary dramatically among ant species (Formicidae): sizes range from several workers living together to super-colonies that stretch for hundreds of kilometers. Although the origins of eusociality and colonial life have been extensively theorized, little work has been done describing the evolution of colony size that followed after. Our study provides the first large-scale investigation into such issues, incorporating colony size data from 118 genera and recently published, nearly complete genus-level molecular phylogenies. We find that colony size change exhibits a bifurcation pattern similar to the feedback loop theory posited by Bourke 1999. Once colony sizes become sufficiently large, they rarely undergo radical decreases in size on a macroevolutionary scale. Additionally, the magnitude of colony size changes seem relatively small: rarely do colony sizes jump from small to large sizes without first transitioning through an intermediate size. Lastly, we echo many previous authors in advocating for the release of unpublished sociometric data and a push toward its further acquisition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbot P, Abe J, Alcock J et al (2011) Inclusive fitness theory and eusociality. Nature 471:E1–E4. doi:10.1038/nature09831

    CAS  Article  PubMed  Google Scholar 

  2. Anderson C, McShea DW (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev Camb Philos Soc 76:S1464793101005656. doi:10.1017/S1464793101005656

    Article  Google Scholar 

  3. Beckers R, Goss S, Deneubourg JL, Pasteels JM (1989) Colony Size, communication and ant foraging strategy. Psyche A J Entomol 96:239–256. doi:10.1155/1989/94279

    Article  Google Scholar 

  4. Bolton B (2013) An online catalog of the ants of the world. http://antcat.org. Accessed 1 Jan 2013

  5. Bonner JT (1988) The evolution of complexity by means of natural selection. Princeton University Press, Princeton

    Google Scholar 

  6. Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evolut Biol 12:245–257. doi:10.1046/j.1420-9101.1999.00028.x

    Article  Google Scholar 

  7. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

    Google Scholar 

  8. Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci 103:18172–18177. doi:10.1073/pnas.0605858103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. doi:10.1177/0049124104268644

    Article  Google Scholar 

  10. Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, Oxford

    Google Scholar 

  11. de Vos JM, Hughes CE, Schneeweiss GM et al (2014) Heterostyly accelerates diversification via reduced extinction in primroses. Proc Biol Sci 281:20140075. doi:10.1098/rspb.2014.0075

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dew RM, Rehan SM, Tierney SM et al (2012) A single origin of large colony size in allodapine bees suggests a threshold event among 50 million years of evolutionary tinkering. Insectes Soc 59:207–214. doi:10.1007/s00040-011-0206-6

    Article  Google Scholar 

  13. Dornhaus A, Powell S, Bengston S (2012) Group size and its effects on collective organization. Annu Rev Entomol 57:123–141. doi:10.1146/annurev-ento-120710-100604

    CAS  Article  PubMed  Google Scholar 

  14. FitzJohn RG (2012) Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol Evol 3:1084–1092. doi:10.1111/j.2041-210X.2012.00234.x

    Article  Google Scholar 

  15. FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol 58:595–611. doi:10.1093/sysbio/syp067

    Article  PubMed  Google Scholar 

  16. Gautrais J, Theraulaz G, Deneubourg J-L, Anderson C (2002) Emergent polyethism as a consequence of increased colony size in insect societies. J Theor Biol 215:363–373. doi:10.1006/jtbi.2001.2506

    Article  PubMed  Google Scholar 

  17. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  18. Hou C, Kaspari M, Vander Zanden HB, Gillooly JF (2010) Energetic basis of colonial living in social insects. Proc Natl Acad Sci USA 107:3634–3638. doi:10.1073/pnas.0908071107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216. doi:10.1126/science.1156108

    CAS  Article  PubMed  Google Scholar 

  20. Kao AB, Couzin ID (2014) Decision accuracy in complex environments is often maximized by small group sizes. Proc Biol Sci 281:20133305. doi:10.1098/rspb.2013.3305

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaspari M, Vargo EL (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610. doi:10.1086/285758

    Article  Google Scholar 

  22. Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578. doi:10.1111/j.1523-1739.2004.00468.x

    Article  Google Scholar 

  23. Kramer BH, Schaible R (2013) Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera. Biol J Linn Soc 109:710–724. doi:10.1111/bij.12072

    Article  Google Scholar 

  24. Laskis KO, Tschinkel WR (2009) The seasonal natural history of the ant, Dolichoderus mariaes, in northern Florida. J Insect Sci 9:1–26. doi:10.1673/031.009.0201

    Article  Google Scholar 

  25. Lucky A, Trautwein MD, Guénard BS et al (2013) Tracing the rise of ants-out of the ground. PLoS ONE 8:e84012. doi:10.1371/journal.pone.0084012

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maddison WP, Maddison DR (2011) Mesquite 2.75: a modular system for evolutionary analysis. http://www.mesquiteproject.org

  27. Maliska ME, Pennell MW, Swalla BJ (2013) Developmental mode influences diversification in ascidians. Biol Lett 9:20130068. doi:10.1098/rsbl.2013.0068

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution (N Y) 67:2240–2257. doi:10.1111/evo.12105

    Google Scholar 

  29. Moreau CS, Bell CD, Vila R et al (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104. doi:10.1126/science.1124891

    CAS  Article  PubMed  Google Scholar 

  30. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466:1057–1062. doi:10.1038/nature09205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Oliver TH, Leather SR, Cook JM (2008) Macroevolutionary patterns in the origin of mutualisms involving ants. J Evolut Biol 21:1597–1608. doi:10.1111/j.1420-9101.2008.01600.x

    CAS  Article  Google Scholar 

  32. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  33. Sasaki T, Granovskiy B, Mann RP et al (2013) Ant colonies outperform individuals when a sensory discrimination task is difficult but not when it is easy. Proc Natl Acad Sci 110:13769–13773. doi:10.1073/pnas.1304917110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Schmidt C (2013) Molecular phylogenetics of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Zootaxa 3647:201–250. doi:10.11646/zootaxa.3647.2.1

    Article  PubMed  Google Scholar 

  35. R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  36. Tschinkel WR (1991) Insect sociometry, a field in search of data. Insectes Soc 38:77–82. doi:10.1007/BF01242715

    Article  Google Scholar 

  37. Tukey JW, McLaughlin DH (1963) Less vulnerable confidence and significance procedures for location based on a single sample: trimming/winsorization 1. Indian J Stat 25:331–352

    Google Scholar 

  38. van Wilgenburg E, Torres CW, Tsutsui ND (2010) The global expansion of a single ant supercolony. Evolut Appl 3:136–143. doi:10.1111/j.1752-4571.2009.00114.x

    Article  Google Scholar 

  39. Ward PS, Brady SG, Fisher BL, Schultz TR (2015) The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst Entomol 40:61–81. doi:10.1111/syen.12090

    Article  Google Scholar 

  40. Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  41. Wilson EO (2008) One giant leap: how insects achieved altruism and colonial life. Bioscience 58:17–25. doi:10.1641/B580106

    Article  Google Scholar 

Download references

Acknowledgments

We thank Benjamin E. R. Rubin and Max E. Winston for helpful discussions to improve this manuscript. We thank Michael LaBarbera and Marcus Kronforst for reading earlier versions of this manuscript. We thank two anonymous reviewers who helped improve this manuscript. We thank the National Science Foundation Research Experience for Undergraduates (NSF REU) program for support of A.T.B. during the summer of 2013. We also thank the National Science Foundation (DEB-1050243, DEB-1442316, and IOS-1354193) and an anonymous donor for support of C.S.M.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. T. Burchill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 66 kb)

Supplementary material 2 (DOC 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burchill, A.T., Moreau, C.S. Colony size evolution in ants: macroevolutionary trends. Insect. Soc. 63, 291–298 (2016). https://doi.org/10.1007/s00040-016-0465-3

Download citation

Keywords

  • Formicidae
  • Eusociality
  • Comparative methods
  • Phylogenetics
  • MuSSE
  • Colony size
  • Group size