Advertisement

Insectes Sociaux

, Volume 62, Issue 4, pp 517–524 | Cite as

Testing the genetic determination of the soldier caste in the silver ant

  • L. Leniaud
  • M. Pearcy
  • A. Taheri
  • S. Aron
Research Article

Abstract

Division of labor among workers is a hallmark of social insects that has largely contributed to their ecological success. In a number of species, ants in particular, environmental cues have long been recognized to determine the different phenotypes of workers. Recently, however, a genetic basis for worker polymorphism has been documented in some species. The silver ant Cataglyphis bombycina is characterized by the co-existence of two physiologically distinct castes of non-reproductive individuals: workers and soldiers. Soldiers are not a worker subcaste; they belong to a third caste, along with the queen and the worker castes. Using microsatellite DNA markers, we tested whether soldier caste determination has a genetic component, by comparing the distribution of patrilines between the soldier and the worker castes. Our data show evidence of genotypic variation in caste propensity in only 2 out of 7 colonies sampled. In addition, most patrilines produce both workers and soldiers across all colonies. These results support moderate genotypic influence to soldier caste determination and suggest that non-genetic, likely environmental factors, also influence caste fate among non-reproductive offspring in this species. We also provide new estimates of the queen mating frequency, which support biogeographic variations in mating behavior in C. bombycina.

Keywords

Division of labor Caste Social insects Mating frequency Cataglyphis 

Notes

Acknowledgments

We thank P.A. Eyer for his help in the field and N. Bennas for her support. Thanks to W.O.H. Hughes for statistical advice. This work was supported by a postdoctoral researcher fellowship (LL) as well as several grants (SA, MP) from the Belgian Fonds National de la Recherche Scientifique and the Université Libre de Bruxelles (ARC 2010-2015 no. 5).

References

  1. Acock AC, Stavig GR (1979) A measure of association for nonparametric statistics. Soc Forces 57:1381–1386CrossRefGoogle Scholar
  2. Anderson KE, Linksvayer TL, Smith CR (2008) Causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). Myrmecol News 11:119–132Google Scholar
  3. Baird DG, Linton LR, Davies RW (1986) Life-history evolution and post-reproductive mortality risk. J Anim Ecol 55:295–302CrossRefGoogle Scholar
  4. Bernard F (1951) Adaptation au milieu chez les Fourmis sahariennes. B Soc Hist Nat Toulouse 86:88–96Google Scholar
  5. Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos T Roy Soc B 351:947–975CrossRefGoogle Scholar
  6. Boomsma JJ, Van Der Have TM (1998) Queen mating and paternity variation in the ant Lasius niger. Mol Ecol 7:1709–1718. doi: 10.1046/j.1365-294x.1998.00504.x CrossRefGoogle Scholar
  7. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, p 529Google Scholar
  8. Chéron B, Monnin T, Federici P, Doums C (2011) Variation in patriline reproductive success during queen production in orphaned colonies of the thelytokous ant Cataglyphis cursor. Mol Ecol 20:2011–2022. doi: 10.1111/j.1365-294X.2011.05075.x CrossRefPubMedGoogle Scholar
  9. Corley M, Fjerdingstad EJ (2011) Mating strategies of queens in Lasius niger ants-is environment type important? Behav Ecol Sociobiol 65:889–897CrossRefGoogle Scholar
  10. Crozier RH, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera—disunity in diversity? Ann Zool Fenn 38:267–285Google Scholar
  11. Crozier RH, Page RE (1985) On being the right size: male contributions and multiple mating in social Hymenoptera. Behav Ecol Sociobiol 18:105–115CrossRefGoogle Scholar
  12. Darras H, Leniaud L, Aron S (2014) Large-scale distribution of hybridogenetic lineages in a Spanish desert ant. P Roy Soc Lond B Bio 281:20132396CrossRefGoogle Scholar
  13. DeFelice DS et al (2014) Geographic variation in polyandry of the Eastern Honey Bee, Apis cerana, in Thailand. Insect Soc 62:37–42. doi: 10.1007/s00040-014-0371-5 CrossRefGoogle Scholar
  14. Délye G (1957) Observations sur la fourmi saharienne Cataglyphis bombycina Rog. Insect Soc 4:72–83CrossRefGoogle Scholar
  15. Detrain C, Pasteels JM (1991) Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant Pheidole pallidula. J Insect Behav 4:157–177CrossRefGoogle Scholar
  16. Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  17. El-Niweiri MAA, Moritz RFA (2011) Mating in the rain? Climatic variance for polyandry in the honeybee (Apis mellifera jemenitica). Popul Ecol 53:421–427. doi: 10.1007/s10144-011-0271-8 CrossRefGoogle Scholar
  18. Evans JD, Wheeler DE (2001) Gene expression and the evolution of insect polyphenisms. BioEssays 23:62–68CrossRefPubMedGoogle Scholar
  19. Evison SEF, Hughes WOH (2011) Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98:643–649. doi: 10.1007/s00114-011-0810-3 CrossRefPubMedGoogle Scholar
  20. Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400CrossRefPubMedGoogle Scholar
  21. Foster KRP, Seppä P, Ratnieks FLW, Thorøn PA (1999) Low paternity in the hornet Vespa crabro indicates that multiple mating by queens is derived in vespine wasps. Behav Ecol Sociobiol 46:252–257CrossRefGoogle Scholar
  22. Franck P, Coussy H, Le Conte Y, Solignac R, Garnery L, Cornuet JM (1999) Microsatellite analysis of sperm admixture in honeybee. Insect Mol Biol 8:419–421CrossRefPubMedGoogle Scholar
  23. Franks NR (1985) Reproduction, foraging efficiency and worker polymorphism in the army ant Eciton burchelli. In: Hölldobler B (ed) Experimental behavioral ecology and sociobiology. Gustav Fischer, Stuttgart, pp 91–107Google Scholar
  24. Goodisman MAD, Kovacs JL, Hoffman EA (2007) Lack of conflict during queen production in the social wasp Vespula maculifrons. Mol Ecol 16:2589–2595CrossRefPubMedGoogle Scholar
  25. Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin, p 732CrossRefGoogle Scholar
  26. Holman L, Stürup M, Trontti K, Boomsma JJ (2011) Random sperm use and genetic effects on worker caste fate in Atta colombica leaf-cutting ants. Mol Ecol 20:5092–5102. doi: 10.1111/j.1365-294X.2011.05338.x CrossRefPubMedGoogle Scholar
  27. Huang MH, Wheeler DE, Fjerdingstad EJ (2013) Mating system evolution and worker caste diversity in Pheidole ants. Mol Ecol 22:1998–2010. doi: 10.1111/mec.12218 CrossRefPubMedGoogle Scholar
  28. Hughes WOH, Boomsma JJ (2007) Genetic polymorphism in leaf-cutting ants is phenotypically plastic. P Roy Soc Lond B Bio 274:1625–1630. doi: 10.1098/rspb.2007.0347 CrossRefGoogle Scholar
  29. Hughes WOH, Sumner S, Van Borm S, Boomsma JJ (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. P Natl Acad Sci USA 100:9394–9397CrossRefGoogle Scholar
  30. Jaffé R, Kronauer DJC, Kraus FB, Boomsma JJ, Moritz RFA (2007) Worker caste determination in the army ant Eciton burchellii. Biol Lett 3:513–516PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kronauer DJC, Berghoff SM, Powell S, Denny AJ, Edwards KJ, Franks NR, Boomsma JJ (2006) A reassessment of the mating system characteristics of the army ant Eciton burchellii. Naturwissenschaften 93:402–406CrossRefPubMedGoogle Scholar
  32. Leniaud L, Pearcy M, Aron S (2013) Sociogenetic organisation of two desert ants. Insect Soc 60:337–344. doi: 10.1007/s00040-013-0298-2 CrossRefGoogle Scholar
  33. Libbrecht R, Keller L (2013) Genetic compatibility affects division of labor in the argentine ant Linepithema humile. Evolution 67:517–524. doi: 10.1111/j.1558-5646.2012.01792.x CrossRefPubMedGoogle Scholar
  34. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364CrossRefPubMedGoogle Scholar
  35. Molet M, Wheeler DE, Peeters C (2012) Evolution of novel mosaic castes in ants: modularity, phenotypic plasticity, and colonial buffering. Am Nat 180:328–341. doi: 10.1086/667368 CrossRefPubMedGoogle Scholar
  36. Molet M, Maicher V, Peeters C (2014) Bigger helpers in the ant Cataglyphis bombycina: increased worker polymorphism or novel soldier caste? PLoS One 9:e84929. doi: 10.1371/journal.pone.0084929 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Nielsen R, Tarpy DR, Reeve HK (2003) Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol Ecol 12:3157–3164CrossRefPubMedGoogle Scholar
  38. Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Q Rev Biol 57:109–134CrossRefGoogle Scholar
  39. Oster G, Wilson EO (1978) Caste ecology in the social insects. Princeton, Princeton University Press, p 372Google Scholar
  40. Pamilo P, Crozier RH (1996) Reproductive skew simplified. Oïkos 75:533–535Google Scholar
  41. Passera L, Roncin E, Kaufmann B, Keller L (1986) Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:630–631CrossRefGoogle Scholar
  42. Pearcy M, Clemencet J, Chameron S, Aron S, Doums C (2004) Characterization of nuclear DNA microsatellite markers in the ant Cataglyphis cursor. Mol Ecol Notes 4:642–644CrossRefGoogle Scholar
  43. Pearcy M, Timmermans I, Allard D, Aron S (2009) Multiple mating in the ant Cataglyphis cursor: testing the sperm limitation and the diploid male load hypotheses. Insect Soc 56:94–102CrossRefGoogle Scholar
  44. Retana J, Cerda X (1994) Worker size polymorphism conditioning size matching in two sympatric seed-harvesting ants. Oïkos 71:261–266Google Scholar
  45. Rheindt FE, Strehl CP, Gadau J (2005) A genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insect Soc 52:163–168CrossRefGoogle Scholar
  46. Robinson GE, Page RE (1988) Genetic determination of guarding and undertaking in honey bee-colonies. Nature 333:356–358CrossRefGoogle Scholar
  47. Schmid-Hempel P (1998) Parasites in social insects. Princeton, Princeton University Press, p 392Google Scholar
  48. Schmidt AM, Linksvayer TA, Boomsma JJ, Pedersen JS (2011) Queen-worker caste ratio depends on colony size in the pharaoh ant (Monomorium pharaonis). Insect Soc 58:139–144. doi: 10.1007/s00040-010-0126-x CrossRefGoogle Scholar
  49. Schwander T, Keller L (2008) Genetic compatibility affects queen and worker caste determination. Science 322:552CrossRefPubMedGoogle Scholar
  50. Schwander T, Lo N, Beekman M, Oldroyd BP, Keller L (2010) Nature versus nurture in social insect caste differentiation. Trends Ecol Evol 25:275–282CrossRefPubMedGoogle Scholar
  51. Sherman PW, Seeley TD, Reeve HK (1998) Parasites, pathogens, and polyandry in social Hymenoptera. Am Nat 131:602–610CrossRefGoogle Scholar
  52. Smith CR, Anderson KE, Tillberg CV, Gadau J, Suarez AV (2008a) Caste determination in a polymorphic social insect: nutritional, social, and genetic factors. Am Nat 172:497–507CrossRefPubMedGoogle Scholar
  53. Smith CR, Toth AL, Suarez AV, Robinson GE (2008b) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9:735–748CrossRefPubMedGoogle Scholar
  54. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New York, p 887Google Scholar
  55. Stearns SC (1992) The evolution of life histories. Oxford University Press, LondonGoogle Scholar
  56. Stürup M, Nash DR, Hughes WO, Boomsma JJ (2014) Sperm mixing in the polyandrous leaf-cutting ant Acromyrmex echinatior. Ecol Evol 4:3571–3582. doi: 10.1002/ece3.1176 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Sundström L (1994) Sex ratio bias, relatedness asymmetry and queen mating frequency in ants. Nature 367:266–268CrossRefGoogle Scholar
  58. Sundström L, Chapuisat M, Keller L (1996) Conditional manipulation of sex ratios by ant workers: a test of kin selection theory. Science 274:993–995CrossRefPubMedGoogle Scholar
  59. Suni SS, Eldakar OT (2011) High mating frequency and variation with lineage ratio in dependent-lineage harvester ants. Insect Soc 58:357–364. doi: 10.1007/s00040-011-0150-5 CrossRefGoogle Scholar
  60. Tarpy DR, Nielsen DI (2002) Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies. Ann Entomol Soc Am 95:513–528CrossRefGoogle Scholar
  61. Van der Have TM, Boomsma JJ, Menken SBJ (1988) Sex investment ratios and relatedness in the monogynous ant Lasius niger (L.). Evolution 42:160–172CrossRefGoogle Scholar
  62. Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979PubMedCentralCrossRefPubMedGoogle Scholar
  63. Wetterer JK (1999) The ecology and evolution of worker size-distribution in leaf-cutting ants (Hymenoptera: Formicidae). Sociobiology 34:119–144Google Scholar
  64. Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34CrossRefGoogle Scholar
  65. Wheeler DE (1991) The developmental basis of worker caste polymorphism in ants. Am Nat 138:1218–1238CrossRefGoogle Scholar
  66. Whitlock MC (2005) Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–1373. doi: 10.1111/j.1420-9101.2005.00917.x CrossRefPubMedGoogle Scholar
  67. Wiernasz DC, Cole BJ (2010) Patriline shifting leads to apparent genetic caste determination in harvester ants. P Natl Acad Sci USA 107:12958–12962. doi: 10.1073/pnas.1003299107 CrossRefGoogle Scholar
  68. Wilson EO (1971) The insect societies. The Belknap Press of Harvard University Press, Cambridge, p 548Google Scholar
  69. Wilson EO (1983) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav Ecol Sociobiol 14:55–60CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2015

Authors and Affiliations

  1. 1.Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Ecology, Biodiversity and EnvironmentAbdelmalek Essaâdi UniversityTétouanMorocco

Personalised recommendations