Abstract
Worldwide only a few of the more than 500 stingless bee species has been studied in any detail. Most studies on stingless bees have been conducted in the Neotropics, whereas a very few have been undertaken in Africa. Foraging success is dependent to a greater or lesser extent on olfactory cues or signals. A prerequisite to effective foraging via odors is that the bees are able to associate odors with a nectar reward and memorize this information. In the context of olfactory learning, only five species of stingless bees have been studied using classical conditioning of the proboscis extension reflex (PER). Foragers are capable of using previously experienced olfactory information when choosing food sources, but they rarely respond in differential PER assays. This study examines for the first time the olfactory learning abilities of African stingless bees. A differential conditioning assay was used to study learning and memory of Meliponula ferruginea and Meliponula bocandei. Our results clearly show that both stingless bee species associate odors with a reward. Learning performance of both stingless bee species was poor compared to Apis m. scutellata. This might reflect that the experimental procedure has been optimized for Apis mellifera. However, the PER paradigm seems to be suitable to study learning, memory, and olfactory perception in Meliponula. As in honeybees, this paradigm will open the way to answer ecological, psychological, and neurobiological questions in these species.



Similar content being viewed by others
References
Abramson CI, Aquino IS, Stone SM (1999) Failure to find proboscis conditioning in one-day old Africanized honey bees (Apis mellifera L.) and in adult uruçu honey bees (Melipona scutellaris). J Comp Psychol 12:242–262
Abramson CI, Mixson TA, Çakmak I, Place AJ, Wells H (2008) Pavlovian conditioning of the proboscis extension reflex in harnessed foragers using paired vs. unpaired and discrimination learning paradigms: tests for differences among honeybee subspecies in Turkey. Apidologie 39:428–435. doi:10.1051/apido:2008025
Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327. doi:10.1007/s00359-008-0321-7
Biesmeijer JC, Slaa EJ (2004) Information flow and organization of stingless bee foraging. Apidologie 35:143–157. doi:10.1051/apido:2004003
Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Physiol A 97:107–119
Buchwald R, Breed MD (2005) Nestmate recognition cues in a stingless bee, Trigona fulviventris. Anim Behav 70:1331–1337. doi:10.1016/j.anbehav.2005.03.017
Couvillon MJ, Ratnieks FLW (2008) Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an “undesirable-absent” recognition system. Behav Ecol Sociobiol 21:194–201. doi:10.1007/s00265-007-0537-5
Couvillon MJ, DeGrandi-Hoffman G, Gronenberg W (2010) Africanized honeybees are slower learners than their European counterparts. Naturwissenschaften 97:153–160. doi:10.1007/s00114-0090621-y
Cunningham JP, Moore CJ, Zalucki MP, West SA (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 207:87–94. doi:10.1241/jeb.00733
Eardley C (2004) Taxonomic revision of the African stingless bees (Apoidea: Apidae: Apinae: Meliponini). Afr Plant Prot 10:63–96
Eardley C, Kwapong P (2013) Taxonomy as a tool for conservation of African stingless bees and their honey. In: Vit P, Pedro SRM, Roubik D (eds) Pot-honey a legacy of stingless bees. Springer, New York, pp 261–268
Eltz T, Brühl CA, van der Kaars S, Chey VK, Linsenmair KE (2001) Pollen foraging and resource partitioning of stingless bees in relation to flowering dynamics in a Southeast Asian tropical rainforest. Insect Soc 48:273–279. doi:10.1007/PL00001777
Frost EH, Shutler D, Hillier NK (2011) Effects of cold immobilization and recovery period on honeybee learning, memory, and responsiveness to sucrose. J Insect Physiol 57:1385–1390. doi:10.1016/j.jinsphys.2011.07.001
Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726–735. doi:10.1016/j.conb.2003.10.015
Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54–66. doi:10.1101/lm.024711.111
Inoue T, Roubik DW, Suka SF (1999) Nestmate recognition in the stingless bee Melipona panamica (Apidae, Meliponini). Insect Soc 46:208–218
Jarau S (2009) Chemical communication during food exploitation in stingless bees. In: Jarau S, Hrncir M (eds) Food exploitation by social insects. Ecological, behavioral, and theoretical approaches. CRC Press, Taylor and Francis Group. Bora Raton, pp 223–249
Jarau S, van Veen JW, Twele R, Reichle C, Herrera Gonzales E, Aguilar I, Francke W, Ayasse M (2010) Workers make the queens in Melipona bees: identification of geraniol as a caste determining compound from labial glands of nurse bees. J Chem Ecol 36:565–569. doi:10.1007/s10886-010-9793-3
Jones SM, van Zweden JS, Grüter C, Menezes C, Alves DA, Nunes-Silva P, Czaczkes T, Imperatriz-Fonseca VL, Ratnieks FLW (2011) The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav Ecol Sociobiol 66:1–12. doi:10.1007/s00265-011-1246-7
Kajobe R (2006) Pollen foraging by Apis mellifera and stingless bees Meliponula bocandei and Meliponula nebulata in Bwindi Impenetrable National Park, Uganda. Afr J Ecol 45:265–274. doi:10.1111/j.1365-2028.2006.00701.x
Kajobe R, Echazarreta CM (2005) Temporal resource partitioning and climatological influences on colony flight and foraging of stingless bees (Apidae; Meliponini) in Ugandan tropical forests. Afr J Ecol 43:267–275. doi:10.1111/j.1365-2028.2005.00586.x
Kerr WE (1969) Some aspects of the evolution of social bees. Evol Biol 2:119–175
Kiatoko N, Raina SK, Muli E, Mueke J (2014) Enhancement of fruit quality in Capsium annum through pollination by Hypotrigona gribo in Kakamega, Western Kenya. Entomol Sci 17:106–110. doi:10.1111/ens.12030
Kirchner WH, Friebe R (1999) Nestmate discrimination in the African stingless bee Hypotrigona gribo Magretti (Hymenoptera: Apidae). Apidologie 30:293–298
Knudsen JT, Tollsten L, Bergström G (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochem 33:253–280
Krausa K (2012) Populationsbiologische Untersuchungen an den afrikanischen Stachellosen Bienen Hypotrigona gribodoi und Liotrigona spec. Masterarbeit Ruhr-Universität Bochum
Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J Fac Sci Hokkaido Univ Ser VI Zool 13:458–464
Laloi D, Sandoz JC, Picard-Nizou AL, Pham-Delègue MH (1999) Olfactory conditioning of the proboscis extension reflex in the bumble bee Bombus terrestris. Ann Soc Entomol 35:154–158
Leonhardt SD, Heard TA, Wallace H (2014) Differences in the resource intake of two sympatric Australian stingless bee species. Apidologie 45:514–527. doi:10.1007/s13592-013-0266-x
Macharia JK, Raina SK, Muli EM (2007) Stingless bees in Kenya. Bees Dev J 83:9
McCabe SI, Farina WM (2009) Odor information transfer in the stingless bee Melipona quadrifasciata: effect of in-hive experiences on classical conditioning of proboscis extension. J Comp Physiol A 195:113–122. doi:10.1007/s00359-008-0391-6
McCabe SI, Farina WM (2010) Olfactory learning in the stingless bee Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). J Comp Physiol A 196:481–490. doi:10.1007/s00359-010-0536-2
McCabe SI, Hartfelder K, Santana WC, Farina WM (2007) Odor discrimination in classical conditioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees. J Comp Physiol A 193:1089–1099. doi:10.1007/s00359-007-0260-8
McCabe SI, Hrncir M, Farina WM (2015) Vibrating donor-partners during trophallaxis modulate associative learning ability of food receivers in the stingless bee Melipona quadrifasciata. Learn Motiv. doi:10.1016/j.lmot.2014.10.005 (in press)
Michener CD (1974) The social behavior of bees: A comparative study. Harvard University Press, Cambridge
Michener CD (2013) The Meliponini. In: Vit P, Pedro SRM, Roubik D (eds) Pot-honey a legacy of stingless bees. Springer, New York, pp 3–18
Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182. doi:10.1051/apido:2004007
Nkoba K, Raina SK, Muli E, Mithöfer K, Mueke J (2012) Species richness and nest dispersion of some tropical meliponine bees (Apidae: Meliponinae) in six habitat types in the Kakamega forest, western Kenya. Int J Trop Insect Sci 32:194–202. doi:10.1017/S1742758412000355
Nunes TM, Mateus S, Turatti IC, Morgan ED, Zucchi R (2011) Nestmate recognition in the stingless bee Frieseomelitta varia (Hymenoptera, Apidae, Meliponini): sources of chemical signals. Anim Behav 81:463–467. doi:10.1016/j.anbehav.2010.11.020
Pham-Delègue MH, Bailez O, Blight MM, Masson C, Picard-Nizou AL, Wadhams LJ (1993) Behavioral discrimination of oilseed rape volatiles by the honeybee, Apis mellifera L. Chem Senses 18:483–494
Raina SK, Kioko E, Zethner O, Wren S (2011) Forest habitat conservation in Africa using commercially important insects. Annu Rev Entomol 56:465–485. doi:10.1146/annurev-ento-120709-1448085
Reichle C, Jarau S, Aguilar I, Ayasse M (2010) Recruits of the stingless bee Scaptotrigona pectoralis learn food odors form the nest atmosphere. Naturwissenschaften 97:519–524. doi:10.1007/s00114-010-0662-2
Reichle C, Aguilar I, Ayasse M, Jarau S (2011) Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food. J Comp Physiol A 197:243–249. doi:10.1007/s00359-010-0605-6
Roselino AC, Hrncir M (2012) Repeated unrewarded scent exposure influences the food choice of stingless bee foragers, Melipona scutellaris. Anim Behav 83:755–762. doi:10.1016/j.anbehav.2011.12.025
Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge
Schmidt VM, Zucchi R, Barth FG (2005) Scent marks left by Nannotrigona testaceicornis at the feeding site: cues rather than signals. Apidologie 36:285–291
Schorkopf DLP, Morawetz L, Bento JMS, Zucchi R, Barth FG (2011) Pheromone paths attached to the substrate in meliponine bees: helpful but not obligatory for recruitment success. J Comp Physiol A 197:755–764. doi:10.1007/s00359-011-0638-5
Singer TL (1998) Roles of hydrocarbons in the recognition system of insects. Amer Zool 38:394–405
Takeda K (1961) Classical conditioned response in the honey bee. J Insect Physiol 6:168–179
Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277
van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnéres AG (eds) Insect hydrocarbons. Biology, biochemistry and chemical ecology. Cambridge University Press
Vareschi E (1971) Duftunterscheidung bei der Honigbiene—Einzelzell-Ableitungen und Verhaltensreaktionen. Z vergl Physiol 75:143–173
Watanabe H, Kobayashi Y, Sakura M, Matsumoto Y, Mizunami M (2003) Classical olfactory conditioning in the cockroach Periplaneta americana. Zoolog Sci 20:1447–1454. doi:10.2108/zsj.20.1447
Wittmann D, Radtke R, Zeil J, Lübke G, Francke W (1990) Robber bees (Lestrimelitta limao) and their host. Chemical and visual cues in nest defense by Trigona (Tetragonisca) angustula (Apidae: Meliponinae). J Chem Ecol 16:631–641
Acknowledgments
We would like to thank icipe—African Science for Food and Health, especially SK Raina for the strong support and the Kenyan Forest Service (KFS) for issuing research permits. Special thanks to the beekeepers from Ivihiga and Isiekuti. We are grateful to two anonymous reviewers for their helpful comments. JH was supported by the German Academic Exchange Service (DAAD) with travel grants, the Deutsche Studienstiftung supported KK with travel grants.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Henske, J., Krausa, K., Hager, F.A. et al. Olfactory associative learning in two African stingless bee species (Meliponula ferruginea and M. bocandei, Meliponini). Insect. Soc. 62, 507–516 (2015). https://doi.org/10.1007/s00040-015-0430-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00040-015-0430-6


