Skip to main content

Queen pheromone promotes production of salivary lysozyme by workers in a termite

Abstract

Social insects have highly elaborated communication systems. In particular, communication via pheromones is important for maintaining complex social roles and behaviors. Brood care is a typical activity that involves pheromonal communication among colony members. In termites, eggs cannot survive without grooming by workers. The workers coat the eggs with their saliva, which contains an antibacterial protein lysozyme that protects the eggs against bacterial pathogens. The more eggs a colony has, the more salivary lysozyme the workers need to produce for egg grooming. However, it is unknown how termite workers regulate their lysozyme production. Here we show that the queen pheromone, which is emitted by both queens and eggs, promotes lysozyme production by workers in the termite Reticulitermes speratus. Exposure to artificial queen pheromone significantly increased the production of salivary lysozyme by workers as well as the artificial addition of eggs. Furthermore, our survey of field colonies revealed clear seasonality in the production of salivary lysozyme. The seasonal pattern of lysozyme production matched well with the seasonal change of the number of eggs per colony. In addition to the known function of the queen pheromone as an inhibitor of neotenic queen differentiation, this study reveals that the same pheromone also acts as a promoter of lysozyme production in workers. We describe a novel function of the multifunctional queen pheromone in termites and provide new insights into the evolutionary parsimony of social insect pheromones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akino T, Yamamura K, Wakamura S, Yamaoka R (2004) Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl Entomol Zool 39:381–387. doi:10.1303/aez.2004.381

    Article  CAS  Google Scholar 

  2. Ayasse M, Paxton RJ (2002) Brood protection in social insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 117–148

    Google Scholar 

  3. Bagnères AG, Killian A, Clément JL, Lange C (1991) Interspecific recognition among termites of the genus Reticulitermes: Evidence for a role for the cuticular hydrocarbons. J Chem Ecol 17:2397–2420. doi:10.1007/BF00994590

    Article  PubMed  Google Scholar 

  4. Benemann JR (1973) Nitrogen fixation in termites. Science 181:164–165. doi:10.1126/science.181.4095.164

    Article  CAS  PubMed  Google Scholar 

  5. de Biseau JC, Passera L, Daloze D, Aron S (2004) Ovarian activity correlates with extreme changes in cuticular hydrocarbon profile in the highly polygynous ant, Linepithema humile. J Insect Physiol 50:585–593. doi:10.1016/j.jinsphys.2004.04.005

    Article  PubMed  Google Scholar 

  6. Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374

    Article  CAS  PubMed  Google Scholar 

  7. Bordereau C, Cancello EM, Sémon E, Courrent A, Quennedey B (2002) Sex pheromone identified after solid phase microextraction from tergal glands of female alates in Cornitermes bequaerti (Isoptera, Nasutitermitinae). Insect Soc 49:209–215. doi:10.1007/s00040-002-8303-1

    Article  Google Scholar 

  8. Bordereau C, Pasteels JM (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Netherlands, pp 279–320

    Google Scholar 

  9. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580. doi:10.1038/244577a0

    Article  CAS  PubMed  Google Scholar 

  10. Chappell DJ, Slaytor M (1993) Uric acid synthesis in freshly collected and laboratory-maintained Nasutitermes walkeri hill. Insect Biochem Mol Biol 23:499–506

    Article  CAS  Google Scholar 

  11. Clément JL, Bagnères AG (1998) Nestmate recognition in termites. In: Vander Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder, pp 126–155

    Google Scholar 

  12. D’Ettorre P, Heinze J, Ratnieks FLW (2004) Worker policing by egg eating in the ponerine ant Pachycondyla inversa. Proc R Soc Lond B 271:1427–1434. doi:10.1098/rspb.2004.2742

    Article  Google Scholar 

  13. Endler A, Liebig J, Schmitt T, Parker J, Jones G, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950. doi:10.1073/pnas.0308447101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Fujita A, Shimizu I, Abe T (2001) Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol 26:116–123. doi:10.1046/j.1365-3032.2001.00224.x

    Article  CAS  Google Scholar 

  15. Gonçalves TT, DeSouza O, Billen J (2010) A novel exocrine structure of the bicellular unit type in the thorax of termites. Acta Zool 91:193–198. doi:10.1111/j.1463-6395.2009.00398.x

    Article  Google Scholar 

  16. Heinze J, Stengl B, Sledge MF (2002) Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa. Behav Ecol Sociobiol 52:59–65. doi:10.1007/s00265-002-0491-1

    Article  Google Scholar 

  17. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  18. Howard RW (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 179–226

    Google Scholar 

  19. Hussain A, Li Y-F, Cheng Y, Liu Y, Chen C-C et al (2013) Immune-related transcriptome of Coptotermes formosanus Shiraki workers: the defense mechanism. PLoS One 8:e69543. doi:10.1371/journal.pone.0069543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jessen K, Maschwitz U (1983) Abdominaldrüsen bei Pachycondyla tridentata (Smith): Formicidae, Ponerinae. Insect Soc 30:123–133. doi:10.1007/BF02223863

    Article  Google Scholar 

  21. Liebig J, Eliyahu D, Brent CS (2009) Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav Ecol Sociobiol 63:1799–1807. doi:10.1007/s00265-009-0807-5

    Article  Google Scholar 

  22. Matsuura K (2006) Termite-egg mimicry by a sclerotium-forming fungus. Proc R Soc Lond B 273:1203–1209. doi:10.1098/rspb.2005.3434

    Article  Google Scholar 

  23. Matsuura K (2012) Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies. J Chem Ecol 38:746–754. doi:10.1007/s10886-012-0137-3

    Article  CAS  PubMed  Google Scholar 

  24. Matsuura K, Matsunaga T (2015) Antifungal activity of a termite queen pheromone against egg-mimicking termite ball fungi. Ecol Res 30:93–100. doi:10.1007/s11284-014-1213-7

    Article  CAS  Google Scholar 

  25. Matsuura K, Tanaka C, Nishida T (2000) Symbiosis of a termite and a sclerotium-forming fungus: sclerotia mimic termite eggs. Ecol Res 15:405–414. doi:10.1046/j.1440-1703.2000.00361.x

    Article  Google Scholar 

  26. Matsuura K, Kobayashi N, Yashiro T (2007a) Seasonal patterns of egg production in field colonies of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Popul Ecol 49:179–183. doi:10.1007/s10144-006-0030-4

    Article  Google Scholar 

  27. Matsuura K, Tamura T, Kobayashi N, Yashiro T, Tatsumi S (2007b) The antibacterial protein lysozyme identified as the termite egg recognition pheromone. PLoS One 2:e813. doi:10.1371/journal.pone.0000813

    Article  PubMed Central  PubMed  Google Scholar 

  28. Matsuura K, Yashiro T, Shimizu K, Tatsumi S, Tamura T (2009) Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase. Curr Biol 19:30–36. doi:10.1016/j.cub.2008.11.030

    Article  CAS  PubMed  Google Scholar 

  29. Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Natl Acad Sci USA 107:12963–12968. doi:10.1073/pnas.1004675107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Mednikova TK, Tiunova NA (1984) Activity of lysozyme and 1-3-beta-glucanase in the salivary glands and gut of different castes of the termite Anacanthotermes ahngerianus. J Evol Biochem Physiol 20:93–97

    Google Scholar 

  31. Monnin T, Peeters C (1998) Monogyny and regulation of worker mating in the queenless ant Dinoponera quadriceps. Anim Behav 55:299–306. doi:10.1023/A:1022360718870

    Article  PubMed  Google Scholar 

  32. Nakayama T, Yoshimura T, Imamura Y (2004) The optimum temperature-humidity combination for the feeding activities of Japanese subterranean termites. J Wood Sci 50:530–534. doi:10.1007/s10086-003-0594-y

    Google Scholar 

  33. Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Vander Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder, pp 193–215

    Google Scholar 

  34. Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B 266:1323–1327. doi:10.1098/rspb.1999.0782

    Article  CAS  Google Scholar 

  35. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78:4601–4605. doi:10.1073/pnas.78.7.4601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Robert A, Peppuy A, Sémon E, Boyer FD, Lacey MJ, Bordereau C (2004) A new C12 alcohol identified as a sex pheromone and a trail-following pheromone in termites: the diene (Z, Z)-dodeca-3,6-dien-1-ol. Naturwissenschaften 91:34–39. doi:10.1007/s00114-003-0481-9

    Article  CAS  PubMed  Google Scholar 

  37. Steiger S, Schmitt T, Schaefer HM (2011) The origin and dynamic evolution of chemical information transfer. Proc R Soc Lond B 278:970–979. doi:10.1098/rspb.2010.2285

    Article  Google Scholar 

  38. Tallamy DW (2005) Egg dumping in insects. Annu Rev Entomol 50:347–370. doi:10.1146/annurev.ento.50.071803.130424

    Article  CAS  PubMed  Google Scholar 

  39. Tayasu I, Sugimoto A, Wada E, Abe T (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229–231. doi:10.1007/BF01138550

    Article  Google Scholar 

  40. Vander Meer RK, Breed MD, Winston ML, Espelie KE (1998) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder

    Google Scholar 

  41. Yamamoto Y, Matsuura K (2011) Queen pheromone regulates egg production in a termite. Biol Lett 7:727–729. doi:10.1098/rsbl.2011.0353

    Article  PubMed Central  PubMed  Google Scholar 

  42. Yuki M, Moriya S, Inoue T, Kudo T (2008) Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zool Sci 25:401–406. doi:10.2108/zsj.25.401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kazuya Kobayashi and Dr. Toshihisa Yashiro for helpful comments. This work was supported by the Japan Society for the Promotion of Science (No. 25221206).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Matsuura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suehiro, W., Matsuura, K. Queen pheromone promotes production of salivary lysozyme by workers in a termite. Insect. Soc. 62, 193–198 (2015). https://doi.org/10.1007/s00040-015-0396-4

Download citation

Keywords

  • Evolutionary parsimony
  • Queen pheromone
  • Social insects
  • Multifunctional pheromone
  • Salivary lysozyme