Insectes Sociaux

, Volume 62, Issue 2, pp 171–181 | Cite as

Reproduction-dispersal tradeoffs in ant queens

  • J. A. HelmsIVEmail author
  • M. Kaspari
Research Article


Organisms often experience reproduction–dispersal tradeoffs mediated by body size. In ants (Hymenoptera: Formicidae) the Found or Fly (FoF) Hypothesis states that dispersing queens face an ecological tradeoff between colony founding and flight success mediated by abdominal nutrient loading. If expressed interspecifically, such a tradeoff implies biomechanical costs to more energetically demanding life history strategies. Claustrally founding queens, who carry the entire resource load necessary to fuel early colony growth, may incur flight costs. We characterized the flight morphology of 21 Neotropical species representing four major subfamilies, spanning four orders of magnitude in body mass and practicing several colony founding strategies. Flight morphologies were compared in a phylogenetic context to evaluate how they varied with body size and reproductive ecology. Consistent with FoF, claustral founders had 30 % lower flight muscle ratios (FMR) and trended toward higher abdomen drag than species in which founding queens feed. The two strategies did not differ in wing loading. Instead, claustral founders evolved larger wings, counteracting the effect of heavier abdomens. Heavy nutrient loads pushed several claustral species to theoretical limits of flight by lowering FMR to levels which cause flightlessness in other insects. Selection for higher nutrient loads related to colony founding is a possible mechanism for the recurrent evolution of flightlessness in ants. The importance and conflicting demands of nutrient storage and flight make ant queens ideal organisms for modeling reproduction–dispersal tradeoffs. By emphasizing the role of flight in ant biology, the FoF Hypothesis highlights this tradeoff and provides novel insights into ant evolution.


Colony founding Dispersal tradeoffs Found or Fly Mating flight Reproductive strategy 



We thank the Republic of Panama, Barro Colorado Nature Monument and the Smithsonian Tropical Research Institute for allowing us to work on Barro Colorado Island. This project could not have succeeded without Rosemary Knapp who allowed us to use her lab. Adam Kay provided valuable advice. Jon Shik and two anonymous reviewers provided helpful comments that improved the manuscript. This work was supported by National Science Foundation grant EF-1065844 to MK. JAH is funded by a National Science Foundation Graduate Research Fellowship and a University of Oklahoma Alumni Fellowship.


  1. Adams E.S. and Balas M.T. 1999. Worker discrimination among queens in newly founded colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 45:330–338.Google Scholar
  2. Adams R.M.M., Liberti J., Illum A.A., Jones T.H., Nash D.R. and Boomsma J.J. 2013. Chemically armed mercenary ants protect fungus-farming societies. Proc. Natl. Acad. Sci. USA 110:15752–15757.Google Scholar
  3. Alexander D.E. 1990. Drag Coefficients of Swimming Animals: Effects of Using Different Reference Areas. Biol. Bull. 179:186–190.Google Scholar
  4. Andersen A.N. 1991. Parallels between ants and plants: implications for community ecology. In: Huxley C.R. and Cutler D.F. (eds) Ant-plant Interactions. Oxford University Press, Oxford, pp 539–558.Google Scholar
  5. AntWeb 2013. Accessed 7 October 2013
  6. Augustin J.O., Santos J.F.L., Elliot S.L. 2011. A behavioral repertoire of Atta sexdens (Hymenoptera, Formicidae) queens during the claustral founding and ergonomic stages. Insectes Sociaux 58:197–206.Google Scholar
  7. Balas M.T. and Adams E.S. 1996. The dissolution of cooperative groups: mechanisms of queen mortality in incipient fire ant colonies. Behav Ecol Sociobiol 38:391–399.Google Scholar
  8. Bernasconi G. and Keller L. 1996. Reproductive conflicts in cooperative associations of fire ant queens (Solenopsis invicta). Proc. Roy. Soc. B. 263:509–513.Google Scholar
  9. Bernasconi G. and Keller L. 1999. Effect of queen phenotype and social environment on early queen mortality in incipient colonies of the fire ant, Solenopsis invicta. Anim. Behav. 57:371–377.Google Scholar
  10. Bolton B., Alpert G., Ward P.S. and Naskrecki P. 2006. Bolton’s Catalogue of Ants of the World. Harvard University Press, Cambridge, MA, CD-ROMGoogle Scholar
  11. Boomsma J.J. and Isaaks J.A. 1985. Energy investment and respiration in queens and males of Lasius niger (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 18:19–27.Google Scholar
  12. Bourke A.F.G. and Franks N.R. 1991. Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biol. J. Linn. Soc. 43:157–178.Google Scholar
  13. Brown M.J.F., Bonhoeffer S. 2003. On the evolution of claustral colony founding in ants. Evol. Ecol. Res. 5:305–313.Google Scholar
  14. Buschinger A. 1986. Evolution of social parasitism in ants. Trends Ecol. Evol. 1:155–160.Google Scholar
  15. Buschinger A. 2014. Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol. News 12:219–235.Google Scholar
  16. Buschinger A. and Heinze J. 1992. Polymorphism of female reproductives in ants. In: Billen J. (ed) Biology and Evolution of Social Insects. Leuven University Press, Leuven, pp 11–23.Google Scholar
  17. Cronin A.L., Molet M., Doums C., Monnin T. and Peeters C. 2013. Recurrent Evolution of Dependent Colony Foundation Across Eusocial Insects. Annu. Rev. Entomol. 58:37–55.Google Scholar
  18. Darveau C.A., Hochachka P.W., Welch K.C. Jr, Roubik D.W. and Suarez R.K. 2005. Allometric scaling of flight energetics in Panamanian orchid bees: a comparative phylogenetic approach. J. Exp. Biol. 208:3581–3591.Google Scholar
  19. Davidson D.W. 1982. Sexual Selection in Harvester Ants (Hymenoptera: Formicidae: Pogonomyrmex). Behav. Ecol. Sociobiol. 10:245–250.Google Scholar
  20. DeHeer C.J. 2002. A comparison of the colony-founding potential of queens from single- and multiple-queen colonies of the fire ant Solenopsis invicta. Anim. Behav. 64:655–661.Google Scholar
  21. Dillon M.E. and Dudley R. 2004. Allometry of maximum vertical force production during hovering flight of neotropical orchid bees (Apidae: Euglossini). J. Exp. Biol. 207:417–425.Google Scholar
  22. Dudley R. 2000. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, Princeton.Google Scholar
  23. Ellington C.P. 1984. The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. Roy. Soc. B. 305:17–40.Google Scholar
  24. Fjerdingstad E.J. and Boomsma J.J. 1997. Variation in size and sperm content of sexuals in the leafcutter ant Atta colombica. Insectes Sociaux 44:209–218.Google Scholar
  25. Fjerdingstad E.J. and Keller L. 2004. Relationships between phenotype, mating behavior, and fitness of queens in the ant Lasius niger. Evolution 58:1056–1063.Google Scholar
  26. Fortelius W., Pamilo P., Rosengren R. and Sundström L. 1987. Male size dimorphism and alternative reproductive tactics in Formica exsecta ants (Hymenoptera, Formicidae). Ann. Zool. Fenn. 24:45–54.Google Scholar
  27. Fox J. and Weisberg S. 2011. An {R} Companion to Applied Regression, 2nd ed. Thousand Oaks CA: Sage. Accessed 18 May 2014.
  28. Frederickson M.E. 2006. The reproductive phenology of an Amazonian ant species reflects the seasonal availability of its nest sites. Oecologia 149:418–427.Google Scholar
  29. Gordon D.M. and Kulig A.W. 1996. Founding, foraging, and fighting: colony size and the spatial distribution of harvester ant nests. Ecology 77:2393–2409.Google Scholar
  30. Guries R.P. and Nordheim E.V. 1984. Flight characteristics and dispersal potential of maple samaras. Forest Sci. 30:434–440.Google Scholar
  31. Hannonen M., Helanterä H. and Sundström L. 2004. Habitat age, breeding system and kinship in the ant Formica fusca. Mol. Ecol. 13:1579–1588.Google Scholar
  32. Harmon L.J., Weir J.T., Brock C.D., Glor R.E. and Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131.Google Scholar
  33. Harrison R.G. 1980. Dispersal polymorphisms in insects. Ann. Rev. Ecol. Syst. 11:95–118.Google Scholar
  34. Hedenström A. 1992. Flight performance in relation to fuel load in birds. J. Theor. Biol. 158:535–537.Google Scholar
  35. Heinze J. and Keller L. 2000. Alternative reproductive strategies: a queen perspective in ants. Trends Ecol. Evol. 15:508–512.Google Scholar
  36. Helms J.A. and Kaspari M. 2014. Found or Fly: nutrient loading of dispersing ant queens decreases metrics of flight ability (Hymenoptera: Formicidae). Myrmecol. News 19:85–91.Google Scholar
  37. Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press of Harvard University Press, Cambridge, MA.Google Scholar
  38. Johnson R.A. 1998. Foundress survival and brood production in the desert seed-harvester ants Pogonomyrmex rugosus and P. barbatus (Hymenoptera, Formicidae). Insectes Sociaux 45:255–266.Google Scholar
  39. Johnson R.A. 2001. Biogeography and Community Structure of North American Seed-Harvester Ants. Ann. Rev. Entomol. 46:1–29.Google Scholar
  40. Johnson R.A. 2002. Semi-claustral colony founding in the seed-harvester ant Pogonomyrmex californicus: a comparative analysis of colony founding strategies. Oecologia 13:60–67.Google Scholar
  41. Kaspari M., Pickering J. and Windsor D. 2001a. The reproductive flight phenology of a neotropical ant assemblage. Ecol. Entomol. 26:245–257.Google Scholar
  42. Kaspari M., Longino J., Pickering J. and Windsor D. 2001b. The phenology of a Neotropical ant assemblage: evidence for continuing and overlapping reproduction. Behav. Ecol. Sociobiol. 50:382–390.Google Scholar
  43. Keller L. and Passera L. 1989. Size and fat content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia 80:236–240.Google Scholar
  44. Keller L. and Ross K.G. 1993. Phenotypic Basis of Reproductive Success in a Social Insect: Genetic and Social Determinants. Science 260:1107–1110.Google Scholar
  45. Keller R.A., Peeters C. and Beldade P. 2014. Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors. eLife 3:e01539.Google Scholar
  46. Lachaud J., Cadena A., Schatz B., Perez-Lachaud G. and Ibarra-Nunez G. 1999. Queen dimorphism and reproductive capacity in the ponerine ant, Ectatomma ruidum Roger. Oecologia 120:515–523.Google Scholar
  47. LaPolla J.S. and Spearman L.A. 2007. Characterization of an Acropyga arnoldi mating swarm and early stage colony founding behavior. Trans. Amer. Entomol. Soc. 133:449–452.Google Scholar
  48. Legendre P. 2011. Lmodel2: Model II Regression. R package version 1.7-0. Accessed 18 May 2014.
  49. Liautard C. and Keller L. 2001. Restricted effective queen dispersal at a microgeographic scale in polygynous populations of the ant Formica exsecta. Evolution 55:2484–2492.Google Scholar
  50. Liu Z., Yamane S., Kojima J., Wang Q. and Tanaka S. 2001. Flexibility of first brood production in a claustral ant, Camponotus japonicus (Hymenoptera: Formicidae). J. Ethol. 19:87–91.Google Scholar
  51. Marden J.H. 1987. Maximum lift production during takeoff in flying animals. J. Exp. Biol. 130:235–258.Google Scholar
  52. Marden J.H. 2000. Variability in the Size, Composition, and Function of Insect Flight Muscles. Ann. Rev. Entomol. 62:157–178.Google Scholar
  53. Markin G.P., Dillier J.H., Hill S.O., Blum M.S. and Hermann H.R. 1971. Nuptial flight and flight ranges of the imported fire ant, Solenopsis saevissima richteri (Hymenoptera: Formicidae). J. Georgia Entomol. Soc. 6:145–156.Google Scholar
  54. Martinez T. and Wheeler D.E. 1994. Storage Proteins in Adult Ants (Camponotus festinatus): Roles in Colony Founding by Queens and in Larval Rearing by Workers. J. Insect Physiol. 40:723–729.Google Scholar
  55. McArdle B.H. 1988. The structural relationship: regression in biology. Can. J. Zool. 66:2329–2339.Google Scholar
  56. Merckx T. and Van Dyck H. 2006. Landscape structure and phenotypic plasticity in flight morphology in the butterfly Pararge aegeria. Oikos 113:226–232.Google Scholar
  57. Mezey J.G. and Houle D. 2005. The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution 59:1027–1038.Google Scholar
  58. Mintzer A.C. 1987. Primary polygyny in the ant Atta texana: number and weight of females and colony foundation success in the laboratory. Insectes Sociaux 34:108–117.Google Scholar
  59. Moreau C.S., Bell C.D., Vila R, Archibald S.B. and Pierce N.E. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104.Google Scholar
  60. Nichols B.J. and Sites R.W. 1991. Ant Predators of Founder Queens of Solenopsis invicta (Hymenoptera: Formicidae) in Central Texas. Environ. Entomol. 20:1024–1029.Google Scholar
  61. Nielsen M.G., Skyberg N. and Peakin G. 1985. Respiration in the sexuals of the ant Lasius flavus. Physiol. Entomol. 10:199–204.Google Scholar
  62. Nonacs P. 1992. Queen condition and alate density affect pleometrosis in the ant Lasius pallitarsis. Insectes Sociaux 39:3–13.Google Scholar
  63. Norberg U. and Leimar O. 2002. Spatial and temporal variation in flight morphology in the butterfly Melitaea cinxia (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 77:445–453.Google Scholar
  64. Norberg U.M. and Rayner J.M.V. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. Roy. Soc. B 316:335–427.Google Scholar
  65. Paradis E., Claude J. and Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290.Google Scholar
  66. Peakin G.J. 1972. Aspects of productivity in Tetramorium caespitum L. Ekol. Pol. 20:55–63.Google Scholar
  67. Peeters C. 2012. Convergent evolution of wingless reproductives across all subfamilies of ants, and sporadic loss of winged queens (Hymenoptera: Formicidae). Myrmecol. News 16:75–91.Google Scholar
  68. Peeters C. and Ito F. 2001. Colony Dispersal and the Evolution of Queen Morphology in Social Hymenoptera. Ann. Rev. Entomol. 46:601–630.Google Scholar
  69. Peeters C., Keller R.A. and Johnson R.A. 2012. Selection against aerial dispersal in ants: two non-flying queen phenotypes in Pogonomyrmex laticeps. PLoS ONE:e47727.Google Scholar
  70. Porter S.D. 1992. Frequency and distribution of polygyne fire ants (Hymenoptera: Formicidae) in Florida. Florida Entomol. 75:248–257.Google Scholar
  71. R Core Team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Accessed 18 May 2014.
  72. Rayner JMV 1988. Form and function in avian flight. Curr. Ornithol. 5:1–66.Google Scholar
  73. Rüppell O. and Heinze J. 1999. Alternative reproductive tactics in females: the case of size polymorphism in winged ant queens. Insectes Sociaux 46:6–17.Google Scholar
  74. Rüppell O., Heinze J. and Hölldobler B. 1998. Size-dimorphism in the queens of the North American ant Leptothorax rugatulus (Emery). Insectes Sociaux 45:67–77.Google Scholar
  75. Schneider C.A., Rasband W.S. and Eliceiri K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675.Google Scholar
  76. Seal, J.N. 2009. Scaling of body weight and fat content in fungus-gardening ant queens: does this explain why leaf-cutting ants found claustrally? Insectes Sociaux 56:135–141.Google Scholar
  77. Seppä P., Sundström L. and Punttila P. 1995. Facultative polygyny and habitat succession in boreal ants. Biol. J. Linn. Soc. 56:533–551.Google Scholar
  78. Shik J.Z., Donoso D.A. and Kaspari M. 2013. The life history continuum hypothesis links traits of male ants with life outside the nest. Entomol. Exp. et Appl. 149:99–109.Google Scholar
  79. Sokal R.R. and Rohlf F.J. 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed. W.H. Freeman and Company, New York.Google Scholar
  80. Sundström L. 1995. Dispersal polymorphism and physiological condition of males and females in the ant, Formica truncorum. Behav. Ecol. 6:132–139.Google Scholar
  81. Tschinkel W.R. 1993. Resource allocation, brood production and cannibalism during colony founding in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol. 33:209–223.Google Scholar
  82. Van Dyck H. and Matthysen E. 1999. Habitat fragmentation and insect flight: a changing ‘design’ in a changing landscape? Trends Ecol. Evol. 14:172–174.Google Scholar
  83. Vogel S. 1994. Life in Moving Fluids: The Physical Biology of Flow. Second edition. Princeton University Press, Princeton.Google Scholar
  84. Vogt J.T., Appel A.G. and West MS. 2000. Flight energetics and dispersal capability of the fire ant, Solenopsis invicta Buren. J. Insect Physiol. 46:697–707.Google Scholar
  85. Wagner D. and Gordon D.M. 1999. Colony age, neighborhood density and reproductive potential in harvester ants. Oecologia 119:175–182.Google Scholar
  86. Wagner D.L. and Liebherr J.K. 1992. Flightlessness in insects. Trends Ecol. Evol. 7:216–220.Google Scholar
  87. Wheeler D.E. and Buck N.A. 1995. Storage proteins in ants during development and colony founding. J. Insect Physiol 41:885–894.Google Scholar
  88. Wheeler D.E. and Buck N.A. 1996. Depletion of reserves in ant queens during claustral founding. Insectes Sociaux 43:297–302.Google Scholar
  89. Wheeler D.E. and Martinez T. 1995. Storage proteins in ants (Hymenoptera:Formicidae). Comp. Biochem. Physiol. 112B:1519.Google Scholar
  90. Wiernasz D.C. and Cole B.J. 2003. Queen size mediates queen survival and colony fitness in harvester ants. Evolution 57:21792183.Google Scholar
  91. Wiernasz D.C., Yencharis J. and Cole B.J. 1995. Size and mating success in males of the western harvester ant, Pogonomyrmex occidentalis Hymenoptera: Formicidae). J. Insect Behav. 8:523531.Google Scholar
  92. Yamauchi K. and Ogata K. 1995. Social Structure and reproductive systems of tramp versus endemic ants (Hymenoptera: Formicidae. of the Ryukyu Islands. Pac. Sci. 49:5568.Google Scholar
  93. Zera A.J. and Denno R.F. 1997. Physiology and ecology of dispersal polymorphism in insects. Ann. Rev. Entomol. 42:207230.Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2015

Authors and Affiliations

  1. 1.Department of BiologyUniversity of OklahomaNormanUSA
  2. 2.Smithsonian Tropical Research InstituteBalboaPanama

Personalised recommendations