Skip to main content

Describing termite assemblage structure in a Peruvian lowland tropical rain forest: a comparison of two alternative methods


Termites are frequently dominant invertebrate decomposers and bioturbators in lowland tropical forests and therefore strongly influence ecosystem processes favouring soil stability, porosity and nutrient retention. In this study, we provide the first spatially replicated dataset on termite assemblage composition, abundance and biomass in a Peruvian rainforest by sampling six separate plots. In addition, two alternative sampling methods (transect method-TM and quadrat method-QM), providing termite species density data, were compared among the plots. The relationships between a range of environmental and spatial variables and species composition were examined using canonical correspondence analysis variation partitioning. We found that the TM captured a higher proportion of the known species in the site (82 %) compared with the QM (66 %). In addition, 56 % of the species sampled by TM were common between the plots while only 18 % of species overlapped using the QM. The QM may therefore potentially have undersampled the species pool. Environmental variables were shown to explain a larger proportion of the species patterns than the spatial variables with elevation, soil temperature and distance to the river being the most important. We discuss the impacts of the environmental and spatial variables on termite species composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Abe T. 1987. Evolution of life types in termites. In: Evolution and Coadaptation in Biotic Communities (Kawano S., Connell J.H. and Hidaka T., Eds), University of Tokyo Press, Tokyo, pp 125–148

  2. Apolinário F. and Martius C. 2004. Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. For. Ecol. Manage. 194: 23–28

  3. Bignell D.E. 2009. Towards a universal sampling protocol for soil biotas in the humid tropics. Pesq. Agropec. Bras 44: 825–834

  4. Bignell D.E. and Eggleton P. 2000. Termites in ecosystems. In: Termites: Evolution, Sociality, Symbiosis, Ecology (Abe T., Bignell D.E. and Higashi M., Eds), Kluwer Academic Publishers, Dordrecht, pp 363–387

  5. Bourguignon T., Leponce M. and Roisin Y. 2011a. Beta-diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43: 473–479

  6. Bourguignon T., Šobotník J., Lepoint G., Martin J.-M., Hardy O.J., Dejean A. and Roisin Y. 2011b. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 36: 261–269

  7. Cancello E., Silva R., Vasconcellos A., Reis Y.T. and Oliveira L.M. 2014. Latitudinal variation in termite species richness and abundance along the Brazilian atlantic forest hotspot. Biotropica 46: 441–450

  8. Chen J., Saunders S., Crow T., Naiman R., Brosofske K., Mroz G., Brookshire B. and Franklin J. 1999. Microclimate in forest ecosystem and landscape ecology variations in local climate can be used to monitor and compare the effects of different management. Bioscience 49: 288–297

  9. Constantino R. 1998. Catalog of the living termites of the new world (Insecta: Isoptera). In: Arquivos de Zoologia (Ferreira Brandão C.R. and Marques D.M., Eds), Arquivos de Zoologia, São Paulo, pp 135231

  10. Constantino R. 2002. An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 67: 1–40

  11. Dahlsjö C.A.L., Parr C.L., Malhi Y., Rahman H., Meir P., Jones D.T. and Eggleton P. 2014. First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J. Trop. Ecol. 30: 143–152

  12. Davies A.B., Levick S.R., Asner G.P., Robertson M.P. van Rensburg B.J. and Parr C.L. 2014. Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography (Cop.) 37: 1–11

  13. Davies R., Eggleton P., Jones D.T., Gathorne-Hardy F.J. and Hernandez L.M. 2003a. Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J. Biogeogr. 30: 847–877

  14. Davies R.G. 2002. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133: 233–242

  15. Davies R.G., Hernández L.M., Eggleton P., Didham R.K., Fagan L.L. and Winchester N.N. 2003b. Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J. Trop. Ecol. 19: 509–524

  16. de Oliveira-Filho A.T. 1992. Floodplain ‘murundus’ of Central Brazil: evidence for the termite-origin hypothesis. J. Trop. Ecol. 8: 1–19

  17. Donovan S., Eggleton P. and Bignell D. 2001. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26: 356–366

  18. Eggleton P. 2011. An introduction to termites: biology taxonomy and functional morphology. In: Biology of Termites: A Modern Synthesis (Bignell D.E., Roisin Y. and Lo N., Eds), Springer Science + Business Media B.V, pp 1–26

  19. Eggleton P., Bignell D., Hauser S., Dibog L., Norgrove L. and Madong B. 2002. Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric. Ecosyst. Environ. 90: 189–202

  20. Eggleton P., Bignell D., Sands W., Waite B., Wood T.G. and Lawton J.H. 1995. The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. J. Trop. Ecol. 11: 85–98

  21. Eggleton P. and Bignell D.E. 1995. Monitoring the response of tropical insects to changes in the environment: troubles with termites. In: Insects in a Changing Environment (Harrington R. and Stork N.E, Eds), Academic Press, London, pp 473–497

  22. Eggleton P., Bignell D.E., Sands W.A., Mawdsley N.A., Lawton J.H., Wood T.G. and Bignell N.C. 1996. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 351: 51–68

  23. Eggleton P., Homathevi R., Jeeva D., Jones D., Davies R. and Maryati M. 1997. The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ger. Soc. Trop. Ecol. 3: 119–128

  24. Eggleton P., Homathevi R., Jones D.T., MacDonald J., Jeeva D., Bignell D.E., Davies R.G. and Maryati M. 1999. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 354: 1791–1802

  25. Gehlhausen S., Schwartz M. and Augspurger C. 2000. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 147: 21–35

  26. Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D., Wall D.H. and Hättenschwiler S. 2010. Diversity meets decomposition. Trends Ecol. Evol. 25: 372–380

  27. Guil N., Hortal J., Sánchez-Moreno S. and Machordom A. 2008. Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment. Landsc. Ecol. 24: 375–390

  28. Hasemann C. and Soltwedel T. 2011. Small-scale heterogeneity in deep-sea nematode communities around biogenic structures. PLoS One 6: 1–13

  29. Huising J., Coe R., Cares J., Louzada R., Zanetti R., de Souza Moreira F.M. and Huang S.P. 2008. Sampling strategy and design to evaluate below-ground biodiversity. In: A Handbook or Tropical Soil Biology (Moreira F.M.S., Huising E.J. and Bignell D.E., Eds), pp. 17–42

  30. Inward D., Vogler A. and Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44: 953–967

  31. Jones C., Lawton J. and Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69: 373–386

  32. Jones D. 2000. Termite assemblages in two distinct montane forest types at 1000 m elevation in the Maliau Basin, Sabah. J. Trop. Ecol. 16: 271–286

  33. Jones D. and Eggleton P. 2000. Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. J. Appl. Ecol. 37: 191–203

  34. Jones D., Susilo F., Bignell D.E., Hardiwinoto S., Gillison A.N. and Eggleton P. 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J. Appl. Ecol. 40: 380–391

  35. Jouquet P., Traoré S., Choosai C., Hartmann C. and Bignell D. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47: 215–222

  36. Krishna K. and Araujo R.L. 1968. A revision of the Neotropical termite genus Neocapritermes (Isoptera, Termitidae, Termitinae). Bull. Am. Museum Nat. Hist. 138: 83–130

  37. Lawton J.H., Bignell D.E., Bolton B., Bloemers G.F., Eggleton P., Hammond P.M., Hodda M., Holt R.D., Larsen T.B., Mawdsley N.A., Stork N.E., Srivastava D.S. and Watt A.D. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391: 72–76

  38. Legendre P. 1990. Quantitative methods and biogeographic analysis. In: Evolutionary Biogeography of the Marine Algae of the North Atlantic (Garbary D.J. and South G.R., Eds), Springer-Verlag, Berlin, pp 9–43

  39. Lepš J. and Šmilauer P. (Eds) 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge

  40. Malhi Y., Farfán Amézquita F., Doughty C.E., Silva-Espejo J.E., Girardin C. a. J., Metcalfe D.B., Aragão L.E.O.C., Huaraca-Quispe L.P., Alzamora-Taype I., Eguiluz-Mora L., Marthews T.R., Halladay K., Quesada C. a., Robertson A.L., Fisher J.B., Zaragoza-Castells J., Rojas-Villagra C.M., Pelaez-Tapia Y., Salinas N., Meir P. and Phillips O.L. 2014. The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecol. Divers. 7: 1–21

  41. Martius C. 1992. Density, humidity, and nitrogen content of dominant wood species of floodplain forests (várzea) in Amazonia. Holz als Roh-und Werkstoff. 50: 300–303

  42. Martius C. 1994. Termite nests as structural elements of the Amazon floodplain forest. Andrias 13: 137–150

  43. Martius C., Hoefer H. and Verhaagh M. 1994. Terrestrial arthropods colonizing an abandoned termite nest in a floodplain forest of the Amazon River during the flood. Andrias 13: 17–22

  44. Martius C. and Ribeiro J. d’Arc 1996. Colony populations and biomass in nests of the Amazonian forest termite Anoplotermes banksi Emerson (Isoptera: Termitidae). Stud. Neotrop. Fauna Environment 31: 82–86

  45. Meltsov V., Poska A., Reitalu T., Sammul M. and Kull T. 2012. The role of landscape structure in determining palynological and floristic richness. Veg. Hist. Archaeobot. 22: 39–49

  46. Meyer V.W., Braack L.E.O., Biggs H.C. and Ebersohn C. 1999. Distribution and density of termite mounds in the northern Kruger National Park, with specific reference to those constructed by Macrotermes Holmgren (Isoptera: Termitidae). African Entomol. 7: 123–130

  47. Mill A.E. 1982. Populations of termites Insecta Isoptera in 4 habitats on the lower Rio Negro river Brazil. Acta Amaz. 12: 53–60

  48. Palin O., Eggleton P., Malhi Y., Girardin C., Rozas-Davila A. and Parr C.L. 2010. Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43: 100–107

  49. Szarzynski J. and Anhuf D. 2001. Micrometeorological conditions and canopy energy exchanges of a neotropical rain forest. Plant Ecol. 153: 231–239

  50. Vasconcellos A., Bandeira A.G., Moura F.M.S., Araújo V.F.P., Gusmão M.A.B. and Constantino R. 2010. Termite assemblages in three habitats under different disturbance regimes in the semi-arid Caatinga of NE Brazil. J. Arid Environ. 74: 298–302

Download references


This study was funded by Natural Environment and Research Council grant NE/G018278/1 to PM and YM. PM is also supported by ARC grant FT110100457. We are grateful to Professor D. Bignell who provided useful insights and comments on the manuscript. We thank Explorers’ Inn Tambopata for hosting the research and Tambopata Research Centre, SERNANP and Ministerio de Agricultura for issuing the relevant permits. We are also grateful to our research assistants H. Siccos and H. Lopes. YM is supported by the Jackson Foundation.

Author information



Corresponding author

Correspondence to C. A. L. Dahlsjö.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 422 kb)

Supplementary material 2 (DOC 234 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahlsjö, C.A.L., Parr, C.L., Malhi, Y. et al. Describing termite assemblage structure in a Peruvian lowland tropical rain forest: a comparison of two alternative methods. Insect. Soc. 62, 141–150 (2015).

Download citation


  • Environmental variables
  • Quadrat method
  • Species composition
  • Spatial variables
  • Termitoidae
  • Transect method