Insectes Sociaux

, Volume 62, Issue 2, pp 141–150 | Cite as

Describing termite assemblage structure in a Peruvian lowland tropical rain forest: a comparison of two alternative methods

  • C. A. L. Dahlsjö
  • C. L. Parr
  • Y. Malhi
  • P. Meir
  • P. Eggleton
Research Article

Abstract

Termites are frequently dominant invertebrate decomposers and bioturbators in lowland tropical forests and therefore strongly influence ecosystem processes favouring soil stability, porosity and nutrient retention. In this study, we provide the first spatially replicated dataset on termite assemblage composition, abundance and biomass in a Peruvian rainforest by sampling six separate plots. In addition, two alternative sampling methods (transect method-TM and quadrat method-QM), providing termite species density data, were compared among the plots. The relationships between a range of environmental and spatial variables and species composition were examined using canonical correspondence analysis variation partitioning. We found that the TM captured a higher proportion of the known species in the site (82 %) compared with the QM (66 %). In addition, 56 % of the species sampled by TM were common between the plots while only 18 % of species overlapped using the QM. The QM may therefore potentially have undersampled the species pool. Environmental variables were shown to explain a larger proportion of the species patterns than the spatial variables with elevation, soil temperature and distance to the river being the most important. We discuss the impacts of the environmental and spatial variables on termite species composition.

Keywords

Environmental variables Quadrat method Species composition Spatial variables Termitoidae Transect method 

Supplementary material

40_2014_385_MOESM1_ESM.tif (422 kb)
Supplementary material 1 (TIFF 422 kb)
40_2014_385_MOESM2_ESM.doc (234 kb)
Supplementary material 2 (DOC 234 kb)

References

  1. Abe T. 1987. Evolution of life types in termites. In: Evolution and Coadaptation in Biotic Communities (Kawano S., Connell J.H. and Hidaka T., Eds), University of Tokyo Press, Tokyo, pp 125–148Google Scholar
  2. Apolinário F. and Martius C. 2004. Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. For. Ecol. Manage. 194: 23–28Google Scholar
  3. Bignell D.E. 2009. Towards a universal sampling protocol for soil biotas in the humid tropics. Pesq. Agropec. Bras 44: 825–834Google Scholar
  4. Bignell D.E. and Eggleton P. 2000. Termites in ecosystems. In: Termites: Evolution, Sociality, Symbiosis, Ecology (Abe T., Bignell D.E. and Higashi M., Eds), Kluwer Academic Publishers, Dordrecht, pp 363–387Google Scholar
  5. Bourguignon T., Leponce M. and Roisin Y. 2011a. Beta-diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43: 473–479Google Scholar
  6. Bourguignon T., Šobotník J., Lepoint G., Martin J.-M., Hardy O.J., Dejean A. and Roisin Y. 2011b. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 36: 261–269Google Scholar
  7. Cancello E., Silva R., Vasconcellos A., Reis Y.T. and Oliveira L.M. 2014. Latitudinal variation in termite species richness and abundance along the Brazilian atlantic forest hotspot. Biotropica 46: 441–450Google Scholar
  8. Chen J., Saunders S., Crow T., Naiman R., Brosofske K., Mroz G., Brookshire B. and Franklin J. 1999. Microclimate in forest ecosystem and landscape ecology variations in local climate can be used to monitor and compare the effects of different management. Bioscience 49: 288–297Google Scholar
  9. Constantino R. 1998. Catalog of the living termites of the new world (Insecta: Isoptera). In: Arquivos de Zoologia (Ferreira Brandão C.R. and Marques D.M., Eds), Arquivos de Zoologia, São Paulo, pp 135231Google Scholar
  10. Constantino R. 2002. An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 67: 1–40Google Scholar
  11. Dahlsjö C.A.L., Parr C.L., Malhi Y., Rahman H., Meir P., Jones D.T. and Eggleton P. 2014. First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J. Trop. Ecol. 30: 143–152Google Scholar
  12. Davies A.B., Levick S.R., Asner G.P., Robertson M.P. van Rensburg B.J. and Parr C.L. 2014. Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography (Cop.) 37: 1–11Google Scholar
  13. Davies R., Eggleton P., Jones D.T., Gathorne-Hardy F.J. and Hernandez L.M. 2003a. Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J. Biogeogr. 30: 847–877Google Scholar
  14. Davies R.G. 2002. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133: 233–242Google Scholar
  15. Davies R.G., Hernández L.M., Eggleton P., Didham R.K., Fagan L.L. and Winchester N.N. 2003b. Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J. Trop. Ecol. 19: 509–524Google Scholar
  16. de Oliveira-Filho A.T. 1992. Floodplain ‘murundus’ of Central Brazil: evidence for the termite-origin hypothesis. J. Trop. Ecol. 8: 1–19Google Scholar
  17. Donovan S., Eggleton P. and Bignell D. 2001. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26: 356–366Google Scholar
  18. Eggleton P. 2011. An introduction to termites: biology taxonomy and functional morphology. In: Biology of Termites: A Modern Synthesis (Bignell D.E., Roisin Y. and Lo N., Eds), Springer Science + Business Media B.V, pp 1–26Google Scholar
  19. Eggleton P., Bignell D., Hauser S., Dibog L., Norgrove L. and Madong B. 2002. Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric. Ecosyst. Environ. 90: 189–202Google Scholar
  20. Eggleton P., Bignell D., Sands W., Waite B., Wood T.G. and Lawton J.H. 1995. The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. J. Trop. Ecol. 11: 85–98Google Scholar
  21. Eggleton P. and Bignell D.E. 1995. Monitoring the response of tropical insects to changes in the environment: troubles with termites. In: Insects in a Changing Environment (Harrington R. and Stork N.E, Eds), Academic Press, London, pp 473–497Google Scholar
  22. Eggleton P., Bignell D.E., Sands W.A., Mawdsley N.A., Lawton J.H., Wood T.G. and Bignell N.C. 1996. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 351: 51–68Google Scholar
  23. Eggleton P., Homathevi R., Jeeva D., Jones D., Davies R. and Maryati M. 1997. The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ger. Soc. Trop. Ecol. 3: 119–128Google Scholar
  24. Eggleton P., Homathevi R., Jones D.T., MacDonald J., Jeeva D., Bignell D.E., Davies R.G. and Maryati M. 1999. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 354: 1791–1802Google Scholar
  25. Gehlhausen S., Schwartz M. and Augspurger C. 2000. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 147: 21–35Google Scholar
  26. Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D., Wall D.H. and Hättenschwiler S. 2010. Diversity meets decomposition. Trends Ecol. Evol. 25: 372–380Google Scholar
  27. Guil N., Hortal J., Sánchez-Moreno S. and Machordom A. 2008. Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment. Landsc. Ecol. 24: 375–390Google Scholar
  28. Hasemann C. and Soltwedel T. 2011. Small-scale heterogeneity in deep-sea nematode communities around biogenic structures. PLoS One 6: 1–13Google Scholar
  29. Huising J., Coe R., Cares J., Louzada R., Zanetti R., de Souza Moreira F.M. and Huang S.P. 2008. Sampling strategy and design to evaluate below-ground biodiversity. In: A Handbook or Tropical Soil Biology (Moreira F.M.S., Huising E.J. and Bignell D.E., Eds), pp. 17–42Google Scholar
  30. Inward D., Vogler A. and Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44: 953–967Google Scholar
  31. Jones C., Lawton J. and Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69: 373–386Google Scholar
  32. Jones D. 2000. Termite assemblages in two distinct montane forest types at 1000 m elevation in the Maliau Basin, Sabah. J. Trop. Ecol. 16: 271–286Google Scholar
  33. Jones D. and Eggleton P. 2000. Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. J. Appl. Ecol. 37: 191–203Google Scholar
  34. Jones D., Susilo F., Bignell D.E., Hardiwinoto S., Gillison A.N. and Eggleton P. 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J. Appl. Ecol. 40: 380–391Google Scholar
  35. Jouquet P., Traoré S., Choosai C., Hartmann C. and Bignell D. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47: 215–222Google Scholar
  36. Krishna K. and Araujo R.L. 1968. A revision of the Neotropical termite genus Neocapritermes (Isoptera, Termitidae, Termitinae). Bull. Am. Museum Nat. Hist. 138: 83–130Google Scholar
  37. Lawton J.H., Bignell D.E., Bolton B., Bloemers G.F., Eggleton P., Hammond P.M., Hodda M., Holt R.D., Larsen T.B., Mawdsley N.A., Stork N.E., Srivastava D.S. and Watt A.D. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391: 72–76Google Scholar
  38. Legendre P. 1990. Quantitative methods and biogeographic analysis. In: Evolutionary Biogeography of the Marine Algae of the North Atlantic (Garbary D.J. and South G.R., Eds), Springer-Verlag, Berlin, pp 9–43Google Scholar
  39. Lepš J. and Šmilauer P. (Eds) 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  40. Malhi Y., Farfán Amézquita F., Doughty C.E., Silva-Espejo J.E., Girardin C. a. J., Metcalfe D.B., Aragão L.E.O.C., Huaraca-Quispe L.P., Alzamora-Taype I., Eguiluz-Mora L., Marthews T.R., Halladay K., Quesada C. a., Robertson A.L., Fisher J.B., Zaragoza-Castells J., Rojas-Villagra C.M., Pelaez-Tapia Y., Salinas N., Meir P. and Phillips O.L. 2014. The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecol. Divers. 7: 1–21Google Scholar
  41. Martius C. 1992. Density, humidity, and nitrogen content of dominant wood species of floodplain forests (várzea) in Amazonia. Holz als Roh-und Werkstoff. 50: 300–303Google Scholar
  42. Martius C. 1994. Termite nests as structural elements of the Amazon floodplain forest. Andrias 13: 137–150Google Scholar
  43. Martius C., Hoefer H. and Verhaagh M. 1994. Terrestrial arthropods colonizing an abandoned termite nest in a floodplain forest of the Amazon River during the flood. Andrias 13: 17–22Google Scholar
  44. Martius C. and Ribeiro J. d’Arc 1996. Colony populations and biomass in nests of the Amazonian forest termite Anoplotermes banksi Emerson (Isoptera: Termitidae). Stud. Neotrop. Fauna Environment 31: 82–86Google Scholar
  45. Meltsov V., Poska A., Reitalu T., Sammul M. and Kull T. 2012. The role of landscape structure in determining palynological and floristic richness. Veg. Hist. Archaeobot. 22: 39–49Google Scholar
  46. Meyer V.W., Braack L.E.O., Biggs H.C. and Ebersohn C. 1999. Distribution and density of termite mounds in the northern Kruger National Park, with specific reference to those constructed by Macrotermes Holmgren (Isoptera: Termitidae). African Entomol. 7: 123–130Google Scholar
  47. Mill A.E. 1982. Populations of termites Insecta Isoptera in 4 habitats on the lower Rio Negro river Brazil. Acta Amaz. 12: 53–60Google Scholar
  48. Palin O., Eggleton P., Malhi Y., Girardin C., Rozas-Davila A. and Parr C.L. 2010. Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43: 100–107Google Scholar
  49. Szarzynski J. and Anhuf D. 2001. Micrometeorological conditions and canopy energy exchanges of a neotropical rain forest. Plant Ecol. 153: 231–239Google Scholar
  50. Vasconcellos A., Bandeira A.G., Moura F.M.S., Araújo V.F.P., Gusmão M.A.B. and Constantino R. 2010. Termite assemblages in three habitats under different disturbance regimes in the semi-arid Caatinga of NE Brazil. J. Arid Environ. 74: 298–302Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2014

Authors and Affiliations

  • C. A. L. Dahlsjö
    • 1
    • 2
    • 6
  • C. L. Parr
    • 3
  • Y. Malhi
    • 1
  • P. Meir
    • 4
    • 5
  • P. Eggleton
    • 2
  1. 1.Environmental Change Institute, School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  2. 2.Soil Biodiversity Group, Department of EntomologyThe Natural History MuseumLondonUK
  3. 3.Department of Earth, Ocean and Ecological Sciences, School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
  4. 4.School of GeosciencesUniversity of EdinburghEdinburghUK
  5. 5.Research School of BiologyAustralian National UniversityCanberraAustralia
  6. 6.Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePragueCzech Republic

Personalised recommendations