Skip to main content
Log in

Red wood ants Formica polyctena switch off active thermoregulation of the nest in autumn

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

To explore timing of nest thermoregulation and its consequence with ant activity, we performed a field study in 12 nests of Formica polyctena along an altitudinal gradient. We recorded inner nest temperature in different nest layers (5, 10 and 15 cm beneath the nest surface) using manual measurement and nest core temperature using continuous datalogger measurement. Potential heat sources, weather conditions and ant activity patterns were also examined. The temperature difference between the depths of 10 and 5 cm was on average positive, which indicates a thermal flow from inside the nest, highlighting the importance of inner heat sources. The highest inner nest temperature was reached in June and the lowest in September. Linear models revealed a significant difference in the thermoregulatory pattern between September and the rest of the year. From April to August, inner nest temperature was affected by weather (air temperature, precipitation, and solar radiation), nest properties (moisture, number of nest openings, nest identity) and ant activity (number of foragers entering the nest). In September the only significant factors were precipitation and nest properties (moisture, number of nest openings, nest identity). Thus, we can assume that in the period of ant activity (April–August) nest thermoregulation is actively maintained by ants, whereas later in autumn red wood ants switch to passive nest thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Begon M., Harper J.L. and Townsend C.R. 1990. Ecology: Individuals, Populations and Communities (second edition). Blackwell Scientific Publications, Malden USA

  • Brandt C.J. 1980. The thermal diffusivity of the organic material of a mound of Formica polyctena in relation to the thermoregulation of the brood (Hymenoptera, Formicidae). Neth. J. Zool. 30: 326-344

  • Brian M.V. 1973. Temperature choice and its relevance to brood survival and caste determination in the ant Myrmica rubra L. Physiol. Zoo1. 46: 245-252

  • Chen Y.H. and Robinson E.J.H. 2013. A comparison of mark-release-recapture methods for estimation colony size in the wood ants Formica lugubris. Insect. Soc. 60: 351-359

  • Coenen-Staβ D., Schaarschmidt B. and Lamprecht I. 1980. Temperature distribution and calorimetric determination of heat production in the nest of the wood ants Formica polyctena (Hymenoptera Formicidae). Ecology 61: 238-244

  • Franks N.R. 1989. Thermoregulation in army ant bivouacs. Physiol. Entomol. 14: 397-404

  • Frouz J. 1996. The role of nest moisture in thermoregulation of ant (Formica polyctena, Hymenoptera, Formicidae) nest. Biologia 51: 541-547

  • Frouz J. 2000. The effect of nest moisture on daily temperature regime in the nests of Formica polyctena wood ants. Insect. Soc. 47: 229-235

  • Frouz J. and Finer L. 2007. Diurnal and seasonal fluctuations in wood ant (Formica polyctena) nest temperature in two geographically distant populations along a south-north gradient. Insect. Soc. 54: 251-259

  • Frouz J., Šantůčková H. and Kalčík J. 1997. The effect of wood ants (Formica polyctena Foerst) on the transformation of phosphorus in a spruce plantation. Pedobiologia 41: 437-447

  • Hölldobler B. and Wilson E.O. 1990. The Ants. The Belknap Press of Harvard University Press, Cambridge

  • Jílková V. and Frouz J. 2014. Contribution of ant and microbial respiration to CO2 emission from wood ant (Formica polyctena) nests. Eur. J. Soil Biol. 60: 44-48

  • Jones J.C. and Oldroyd B.P. 2007. Nest thermoregulation in social insects. Adv. Insect Physiol. 33: 153-191

  • Kasimova R.G., Tishin D., Obnosov Y.V., Dlussky G.M., Baksht F.B. and Kacimov A.R. 2014. Ant mound as an optimal shape in constructal design: Solar irradiation and circadian brood/fungi-warming sorties. J. Theor. Biol. in press http://dx.doi.org/10.1016/j.jtbi.2014.01.038

  • Kipyatkov V.E. and Schederova S.S. 1985. Seasonal changes in behavior patterns of the ant Formica polyctena in artificial nest with temperature gradient. Zool. Zhurnal 65: 1847-1857

  • Kipyatkov V.E. and Schederova S.S. 1990. The endogenous rhytm of queens reproductivity in red wood ants (Formica group). Zool. Zhurnal 69: 40-52

  • Kneitz G. 1964. Untersuchungen zum Aufbau und zur Erhaltung des Nestwärmehaushaltes bei Formica polyctena Foerst (Hym, Formicidae). Disertation, University of Würzburg, Würzburg, Germany

  • Kneitz G. 1966. Versuche zur Wärmeorientierung von Arbeiterinhen der Waldameisenart Formica polyctena Foerst (Hym, Formicidae). Insect. Soc. 13: 285-296

  • Martin A.J. 1980. Vernal thermoregulation in mound nests of Formica aquilonia Yarrow, the active heating of brood chambers. Izv. Akad. Nauk. Eston. 29: 188-197

  • Pekár S. and Brabec M. 2012. Moderní Analýza Biologických Dat 2. Masarykova Universita Brno, Czech Republic.

  • Penick C.A. and Tschinkel W.R. 2008. Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insect. Soc. 55: 176-182

  • Porter S.D. 1988. Impact of temperature on colony growth and developmental rates of the ant Solenopsis invicta. J. Insect Physiol. 34: 1127-1133

  • Raignier A. 1948. L’économie thermique d’une colonie polycalique de la fourmi des bois Formica rufa polyctena Foerst. La cellule 51: 279-368

  • Roces F. and Núñez J.A. 1989. Brood translocation and circadian variation of temperature preference in the ant Campotonus mus. Oecologia 81: 33-37

  • Rosengren R., Fortelius W., Lindström K. and Luther A. 1987. Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Ann. Zool. Fennici 24: 147-155

  • Schneirla T.C. 1971. Army Ants: a Study in Social Organization (H. Topoff, Ed) Freeman, San Francisco

  • Seeley T.D. and Heinrich B. 1981. Regulation of temperature in the nest of social insects In: Insect Thermoregulation (B. Heinrich, Ed). John Wiley and Sons. pp 160-234

  • Sorvari J. 2013. Proximity to the forest edge affects the production of sexual offspring and colony survival in the red wood ant Formica aquilonia in forest clear-cuts. Scand. J. Forest Res. 28: 451-455

  • Steiner A. 1924. Über den sozialen Wärmehaushalt der Waldameise (Formica rufa). Z. Vergl. Physiol. 2: 23-56

  • Véle A. and Holuša J. 2008. Impact of vegetation removal on the temperature and moisture content of red wood ants nest. Insect. Soc. 55: 364-369

  • Wasmann E. 1945. Das Gesellschaftsleben der Ameisen Aschendorf, Műnster, Germany

  • Wilson E.O. 1971. The Insect Societies. Belknap Press of Harvard University Press, Massachusetts

  • Zahn M. 1958. Temperatursinn, Wärmehaushat und Bauweise der rote Waldameisen (Formica rufa L.). Zool. Beitrns. 3: 127-194

Download references

Acknowledgments

Authors would like to thank National Park Šumava for the research permission, Miss V. Jílková for proof reading and comments to the manuscript, Mr. F. Rooks for the language corrections and two anonymous reviewers for valuable comments which helped to increase the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Š. Kadochová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadochová, Š., Frouz, J. Red wood ants Formica polyctena switch off active thermoregulation of the nest in autumn. Insect. Soc. 61, 297–306 (2014). https://doi.org/10.1007/s00040-014-0356-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-014-0356-4

Keywords

Navigation