Insectes Sociaux

, Volume 61, Issue 3, pp 207–215 | Cite as

Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.)

  • E. Zakar
  • A. Jávor
  • Sz. KuszaEmail author
Review Article


Currently, the Varroa destructor mite is the most serious parasite of honey bees (Apis mellifera) and has become a nearly cosmopolitan species. The mite not only causes damage by feeding on the haemolymph of honey bees, but it also transmits viruses, which have been implicated in colony collapse disorder. The major research goal has been to breed mite-tolerant honey bee lines in order to reduce the amount of pesticide used, because pesticides can promote the evolution of resistance in mites. In this review, we describe different behavioural traits and genes that may be part of the defence against the Varroa mite. Specifically, we review grooming behaviour, Varroa-sensitive hygiene and the suppression of mite reproduction. A large number of candidate genes have been identified by Quantitative Trait Loci studies, and through gene expression studies their function and effect have been elucidated. Results from the studies discussed can be used in apiary practice.


Varroa destructor Tolerance behaviours Candidate genes QTL Gene expression 



The publication is supported by the TÁMOP-4.2.2/B-10/1-2010-0024 project. The project is co-financed by the European Union and the European Social Fund. The manuscript has been proofread by Proof-Reading Service and Dr. Matthew Baranski as native English speaker. Authors thank three anonymous reviewers for their helpful comments.


  1. Alaux C., Dantec C., Parrinello H. and Le Conte Y. 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and Varroa-parasitized bees. BMC Genomics 12: 496Google Scholar
  2. Amdam G., Hartfelder K., Norberg K., Hagen A. and Omholt S.W. 2004. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97: 741-747Google Scholar
  3. Andersen S.O., Peter M.G. and Roepstorff P. 1996. Cuticular sclerotisation in insects. Comp. Biochem. Physiol. 113: 689-705Google Scholar
  4. Anderson D.L. and Trueman J.W.H. 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24: 165-189Google Scholar
  5. Aizen M.A., Garibaldi L.A., Cunningham S.A. and Klein A.M. 2009. How much does agriculture depend on pollinators? Lesson from long-term trends in crop production. Ann. Bot. 103: 1579-1588Google Scholar
  6. Arechavaleta-Velasco M.E., Alcala-Escamilla K., Robles-Rios C., Tsuruda J.M. and Hunt G.J. 2012. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behaviour in response to Varroa mites. PLoS ONE 7: e47269Google Scholar
  7. Ashida M. and Brey P.T. 1998. Recent advances in research on the insect prophenoloxidase cascade. In: Molecular Mechanisms of Immune Responses in Insects (Brey P.T. and Hultmark D., Eds), Chapman and Hall, London UK. pp 135-172Google Scholar
  8. Aumeier P., Rosenkranz P. and Goncalves L.S. 2000. A comparison of the hygienic response of Africanised and European (Apis mellifera carnica) honey bees to Varroa infested brood in tropical Brazil. Genet. Mol. Biol. 23: 787-791Google Scholar
  9. Beggs K.T., Hamilton I.S., Kurshan P.T., Mustard J.A. and Mercer A.R. 2005. Characterisation of a D2 like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect. Biochem. Mol. Biol. 35: 873-882Google Scholar
  10. Behrens D., Huang Q., Geßner C., Rosenkranz P., Frey E., Locke B., Moritz R.F.A. and Kraus F.B. 2011. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 1: 451-458Google Scholar
  11. Blenau W., Erber J. and Baumann A. 1998. Characterisation of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localisation in the brain. J. Neurochem. 70: 15-23Google Scholar
  12. Boecking O. and Ritter W. 1993. Grooming and removal behaviour of Apis mellifera intermissa in Tunisia against Varroa jacobsoni. J. Apicult. Res. 32: 127-134Google Scholar
  13. Boecking O., Bienefeld K. and Drescher W. 2000. Heritability of the Varroa-specific hygienic behaviour in honey bees (Hymenoptera: Apoidae). J. Anim. Breed. Genet. 117: 417-424Google Scholar
  14. Boecking O. and Genersch E. 2008. Varroosis - the on-going crisis in bee keeping. J. Verbraucherschutz Lebensmittelsicherheit 3: 221-228Google Scholar
  15. Bowen-Walker P.L., Martin S.J. and Gunn A. 1999. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invert. Pathol. 73: 101-106Google Scholar
  16. Bull J.C., Ryabov E.V., Prince G., Mead A., Zhang C., Baxter L.A., Pell J.K., Osborne J.L. and Chandler D. 2012. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLOS Pathogenes 8: e1003083Google Scholar
  17. Büchler R. 1994. Varroa tolerance in honey bees - occurrence, characters and breeding. Bee World 49: 6-18Google Scholar
  18. Campbell E.M., Budge G.E. and Bowman A.S. 2010. Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase. Parasites Vectors 3: 73Google Scholar
  19. Cardoen D., Ernst U.R., Vaerenbergh M.V., Boerjan B., de Graaf D.C., Wenseleers T., Schoofs L. and Verleyen P. 2011. Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees. PLos One 6: e20043Google Scholar
  20. Cociancich S., Ghazi A., Hetruc C., Hoffmann J.A. and Letellier L. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268: 19239-19245Google Scholar
  21. Cornman R.S., Schatz M.C., Johnston J.S., Chen Y.-P., Pettis J., Hunt G., Bourgeois L., Elsik C., Anderson D., Grozinger C.M. and Evans J.D. 2010. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11: 602Google Scholar
  22. Cremer S., Armitage S. and Schmid-Hempel P. 2007. Social immunity. Curr. Biol. 17: R693-R702Google Scholar
  23. De Guzman L.I. and Delfinado-Baker M. 1996. A new species of Varroa (Acari: Varroidae) associated with Apis koschevnikovi (Apidae: Hymenoptera) in Borneo. Int. J. Acarol. 22: 23-27Google Scholar
  24. Dekkers J.C.M. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim. Science 82: E313-E328Google Scholar
  25. Delaplane K.S. and Mayer D.F. 2000. Crop Pollination by Bees. CAB, New YorkGoogle Scholar
  26. Delfinado-Baker M. and Aggarwal K. 1987. A new Varroa (Acari: Varroidae) from the nest of Apis cerana (Apidae). Int. J. Acarol. 13: 233-237Google Scholar
  27. Delfinado-Baker M., Rath W. and Boecking O. 1992. Phoretic bee mites and honey bee grooming behaviour. Int. J. Acarol. 18: 315-322Google Scholar
  28. Erler S., Popp M. and Lattott H.M.G. 2011. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris). PLoS ONE 6: e18126Google Scholar
  29. Evans J.D. 2006. Beepath: An ordered quantitative-PCR array for exploring honey bee immunity and disease. J. Invert. Pathol. 93: 135-139Google Scholar
  30. Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.-L., Jiang H., Kanost M., Thompson G.J., Zou Z. and Hultmark D. 2006. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15: 645-656Google Scholar
  31. Evans J.D. and Spivak M. 2010. Socialized medicine: Individual and communal disease barriers in honey bees. J. Invert. Pathol. 103: S62-S72Google Scholar
  32. Food and Agriculture Organization of the United Nations (FAO) 2009. FAOSTAT. Accessed 10 Apr 2009
  33. Fraczek R., Zóltowska K. and Lipinski Z. 2009. The activity of nineteen hydrolases in extracts from Varroa destructor and in haemolymph of Apis mellifera carnica worker bees. J. Apicult. Sci. 53: 43-51Google Scholar
  34. Fries I. and Bommarco R. 2007. Possible host-parasite adaptation in honey bee infested by Varroa destructor mites. Apidologie 38: 525-533Google Scholar
  35. Fuchs S. 1994. Nonreproducing Varroa jacobsoni Oud. in honey bee worker cells - status of mites or effects of brood cells? Exp. Appl. Acarol. 18: 309-317Google Scholar
  36. Gallai N., Salles J.-M., Settele J. and Vaissière B.E. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68: 810-821Google Scholar
  37. Garbian Y., Maori E., Kalev H., Shafir S. and Sela I. 2012. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLOS Pathogens 8: e1003035Google Scholar
  38. Garrido C. and Rosenkranz P. 2003. The reproductive program of female Varroa destructor mites is triggered by its host, Apis mellifera. Exp. Appl. Acarol. 31: 269-273Google Scholar
  39. Gregorc A., Evans J.D., Scharf M. and Ellis J.D. 2011. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mite (Varroa destructor). J. Insect Physiol. 58: 1042-1049Google Scholar
  40. Gregory P.G., Evans J.D., Rinderer T. and de Guzman L. 2005. Conditional immune-gene suppression of honeybees parasitized by Varroa mites. J. Insect Science 5: 7Google Scholar
  41. Hall M., Wang R., Antwerpen R., Sottrup-Jensen L. and Söderhäll K. 1999. The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Proc. Natl Acad. Sci. 96: 1965-1970Google Scholar
  42. Harbo J.R. and Hoopingarner R.A. 1997. Honey bee (Hymenoptera: Apidae) in the United States that express resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J. Econ. Entomol. 90: 893-898Google Scholar
  43. Harbo J.R. and Harris J.W. 1999. Heritability in honey bee (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J. Econ. Entomol. 92: 261-265Google Scholar
  44. Harbo J.R. and Harris J.W. 2005. Suppressed mite reproduction explained by the behaviour of adult bees. J. Apicult. Res. 44: 21-23Google Scholar
  45. Harris J.W. 2007. Bees with Varroa Sensitive Hygiene preferentially remove mite infested pupae aged ≤ five days post capping. J. Apicult. Res. Bee World 46: 134-139Google Scholar
  46. Humphries M.A., Mustard J.A., Hunter S.J., Mercer A., Ward V. and Ebert P.R. 2003. Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J. Neurobiol. 55: 315-330Google Scholar
  47. Hunt G.J. and Page R.E.J. 1995. A linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics 139: 1371-1382Google Scholar
  48. Ilyasov R.A., Gaifullina L.R., Saltykova E.S., Poskryakov A.V. and Nikolenko A.G. 2012. Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. J. Apicult. Sci. 56: 115-124Google Scholar
  49. Klaudiny J., Albert S., Bachanová K., Kopernicky J. and Simúth J. 2005. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. Biol. 35: 11-22Google Scholar
  50. Kraus B. and Hunt G. 1995. Differentiation of Varroa jacobsoni Oud. populations by random amplification of polymorphic DNA (RAPD). Apidologie 26: 283-290Google Scholar
  51. Kurtz J. 2005. Specific memory within innate immune systems. Trends Immunol. 26: 186-192Google Scholar
  52. Lai-Fook J. 1966. The repair of wounds in the integument of insects. J. Insect Physiol. 12: 195-226Google Scholar
  53. Lapidge K., Oldroyd B.P. and Spivak M. 2002. Seven suggestive quantitative trait loci influence hygienic behaviour of honey bees. Naturwissenschaften 89: 565-568Google Scholar
  54. Lattorff H.M.G., Moritz R.F.A., Crewe R.M. and Solignac M. 2007. Control of reproductive dominance by the thelytoky gene in honeybees. Biol. Lett. 3: 292-295Google Scholar
  55. Lee G.M., Brown M.J.F. and Oldroyd B.P. 2013. Inbred and outbred honey bee (Apis mellifera) have similar innate immune response. Insect. Soc. 60: 97-102Google Scholar
  56. Lobo N.F., Ton L.Q., Hill C.A., Emore C., Romero-Severson J., Hunt G.J. and Collins F.H. 2003. Genomic analysis in the sting-2 quantitative trait locus for defensive behavior in the honey bee, Apis mellifera. Genome Res. 13: 2588-2593Google Scholar
  57. Locke B. and Fries I. 2011. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42: 533-542Google Scholar
  58. Lourenco A.P., Zufelato M.S., Bitondi M.M.G. and Simoes Z.L.P. 2005. Molecular characterisation of a cDNA encoding prophenoloxidase and its expression in Apis mellifera. Insect Biochem. Mol. Biol. 35: 541-552Google Scholar
  59. Lourenco A.P., Martins J.R., Bitondi M.M.G. and Simoes L.P. 2009. Trade-off between immune stimulation and expression of storage protein genes. Arch. Insect. Biochem. Physiol. 71: 70-87Google Scholar
  60. Lowenberger C.A., Smarth C.T., Bulet P., Ferdig M.T., Severson D.W., Hoffmann J.A. and Christensen B.M. 1999. Insect immunity: molecular cloning, expression, and characterisation of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. Insect Mol. Biol. 8: 107-118Google Scholar
  61. Martel A.-C., Zeggane S., Auriéres C., Drajnudel P., Faucon J.-P. and Aubert M.F.A. 2007. Acaricide residues in honey and was after treatment of honey bee colonies with Apivar® or Asuntol® 50. Apidologie 38: 534-544Google Scholar
  62. Milum V.G. 1947. Grooming dance and associated activities of the honey bee. III. Acad. Sci. Trans. 40: 194-196Google Scholar
  63. Mondragon L., Martin S. and Vandame R. 2006. Grooming dance and associated activities of the honey bee. III. Apidologie 37: 67-74Google Scholar
  64. Moretto G., Gonçalves L.S. and De Jong D. 1993. Heritability of Africanised and European honey bee defensive behaviour against the mite Varroa jacobsoni. Rev. Bras. Genet. 16: 71-77Google Scholar
  65. Moritz R.F.A. and Evans J.D. 2007. Virology and the honey bee. In: Honeybee Breeding and Genomics for Resistance to Virus Infections (Aubert M., Ball B., Fries I., Moritz R.F.A., Milani N. and Bernadellie I., Eds), European Commission, Brussels. pp 347-370Google Scholar
  66. Moritz R.F.A., de Miranda J., Fries I., Le Conte Y., Neumann P. and Paxton R. 2010. Research strategies to improve honeybee health in Europe. Apidologie 41: 227-242Google Scholar
  67. Mustard J.A., Pham P.M. and Smith B.H. 2010. Modulation of motor behaviour by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J. Insect Physiol. 56: 422-430Google Scholar
  68. Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D. and Le Conte Y. 2008. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9: 301Google Scholar
  69. Neve K.A., Seamans J.K. and Trantham-Davidson H. 2004. Dopamine receptor signalling. J. Recept. Signal Transduct. Res. 24: 165-205Google Scholar
  70. Oudemans A.C. 1904. On a new genus and species of parasitic acari. Notes Leyden Museum 24: 216-222Google Scholar
  71. Oxley P.R., Spivak M. and Oldroyd B.P. 2010. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol. Ecol. 19: 1453-1461Google Scholar
  72. Peng Y.S. 1988. The resistance mechanism of the Asian honey bee Apis cerana to the mite Varroa jacobsoni. In: Africanized Honeybees and Bee Mites (Needham G.R., Page R.E., Delfinado-Baker M. and Bowman C.E., Eds), Ellis Horwood, Chichester. pp 426-429Google Scholar
  73. Peng Y.S., Fang Y., Xu S. and Ge L. 1987. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite Varroa jacobsoni Oudemans. J. Invert. Pathol. 49: 54-60Google Scholar
  74. Pettis J.S. 2004. A scientific note on Varroa destructor resistance to coumapos in the United States. Apidologie 35: 91-92Google Scholar
  75. Rawlings R.D. and Barrett A.J. 1993. Evolutionary families of peptides. Biochem. J. 290: 205-218Google Scholar
  76. Richard F.J., Aubert A. and Grozinger C.M. 2008. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biology 6: 50Google Scholar
  77. Rosenkranz P. 1999. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud. in South America. Apidologie 30: 159-172Google Scholar
  78. Rosenkranz P., Tewarson N.C., Singh A. and Engels W. 1993. Differential hygienic behaviour towards Varroa jacobsoni in capped worker brood of Apis cerana depends on alien scent adhering to the mites. J. Apicult. Res. 32: 89-93Google Scholar
  79. Rosenkranz P., Aumeier P. and Ziegelmann B. 2010. Biology and control of Varroa destructor. J. Invert. Pathol. 103: S96-S119Google Scholar
  80. Rothenbuhler W. 1964. Behaviour genetics of nest cleaning behaviour in honeybees I. Response of four inbred lines to disease killed brood. Anim. Behav. 12: 578-583Google Scholar
  81. Royet J., Reichart J.M. and Hoffmann J.A. 2005. Sensing and signalling during infection in Drosophila. Curr. Opin. Immunol. 17: 11-17Google Scholar
  82. Ruttner F., Marx H. and Marx G. 1984. Beobachtungen über eine mögliche Anpassung von Varroa Jacobsoni an Apis mellifera L. in Uruguay. Apidologie 15: 43-62Google Scholar
  83. Ruttner F. and Hänel H. 1992. Active defence against Varroa mites in a Carniolan stain of honeybee (Apis mellifera carnica Pollmann). Apidologie 23: 173-187Google Scholar
  84. Schmid-Hempel P. 2005. Evolutionary ecology of insect immune defence. Annu. Rev. Entomol. 50: 529-551Google Scholar
  85. Spivak M. and Reuter G.S. 1998. Performance of hygienic honey bee colonies in a commercial apiary. Apidologie 29: 291-302Google Scholar
  86. Stanimirovic Z., Stevanovic J., Mirilovic M. and Stojic V. 2008. Heritability of hygienic behaviour in grey honey bee (Apis mellifera carnica). Acta Veter. 58: 593-601Google Scholar
  87. Stanimirovic Z., Stevanovic J., Aleksic N. and Stojic V. 2010. Heritability of grooming behaviour in grey honey bee (Apis mellifera carnica). Acta Veter. 60: 313-323Google Scholar
  88. Strand M.R. 2008. The insect cellular immune response. Insect Science 15: 1-14Google Scholar
  89. Stroschein-Stevenson S.L., Foley E., O’Farrell P.H. and Johnson A.D. 2009. Phagocytosis of Candida albicans by RNAi-treated Drosophila S2 cells. Methods Mol. Biol. 470: 347-358Google Scholar
  90. Tsurada J.M., Harris J.W., Bourgeois L., Danka R.G. and Hunt G.J. 2012. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behaviour in honey bees. PLoS ONE 7: e48276Google Scholar
  91. van Engelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R. and Pettis J.S. 2009. Colony collapse disorder: A descriptive study. PLoS ONE 4: e6481Google Scholar
  92. Webster T.C. and Delaplane K.S. 2001 Mites of the Honey Bee. Dadant and Sons Inc., Hamilton IllinoisGoogle Scholar
  93. Weinstock G.M., Robinson G.E., Gibbs R.A., Worley K.C., Evans J.D., Maleszka R., Robertson H.M., Weaver D.B., Beye M., Carninci P. et al. 2006. Insights into social insects from the genome of the honey bee Apis mellifera. Nature 443: 931-949Google Scholar
  94. Zhang Y., Liu X., Zhang W. and Han R. 2010. Differential gene expression of the honey bee Apis mellifera and Apis cerana induced by Varroa destructor infection. J. Insect Physiol. 56: 1207-1218Google Scholar
  95. Zou Z., Lopes D.L., Kanost M.R., Evans J.D. and Jiang H. 2006. Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Mol. Biol. 15: 603-614Google Scholar
  96. Zufelato M.S., Lourenco A.P., Simoes Z.L.P., Jorge J.A. and Bitondi M.M.G. 2004. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34: 1257-1268Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2014

Authors and Affiliations

  1. 1.Centre for Agricultural and Applied Economic ScienceUniversity of DebrecenDebrecenHungary

Personalised recommendations