Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.)


Currently, the Varroa destructor mite is the most serious parasite of honey bees (Apis mellifera) and has become a nearly cosmopolitan species. The mite not only causes damage by feeding on the haemolymph of honey bees, but it also transmits viruses, which have been implicated in colony collapse disorder. The major research goal has been to breed mite-tolerant honey bee lines in order to reduce the amount of pesticide used, because pesticides can promote the evolution of resistance in mites. In this review, we describe different behavioural traits and genes that may be part of the defence against the Varroa mite. Specifically, we review grooming behaviour, Varroa-sensitive hygiene and the suppression of mite reproduction. A large number of candidate genes have been identified by Quantitative Trait Loci studies, and through gene expression studies their function and effect have been elucidated. Results from the studies discussed can be used in apiary practice.

This is a preview of subscription content, log in to check access.


  1. Alaux C., Dantec C., Parrinello H. and Le Conte Y. 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and Varroa-parasitized bees. BMC Genomics 12: 496

  2. Amdam G., Hartfelder K., Norberg K., Hagen A. and Omholt S.W. 2004. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97: 741-747

  3. Andersen S.O., Peter M.G. and Roepstorff P. 1996. Cuticular sclerotisation in insects. Comp. Biochem. Physiol. 113: 689-705

  4. Anderson D.L. and Trueman J.W.H. 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24: 165-189

  5. Aizen M.A., Garibaldi L.A., Cunningham S.A. and Klein A.M. 2009. How much does agriculture depend on pollinators? Lesson from long-term trends in crop production. Ann. Bot. 103: 1579-1588

  6. Arechavaleta-Velasco M.E., Alcala-Escamilla K., Robles-Rios C., Tsuruda J.M. and Hunt G.J. 2012. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behaviour in response to Varroa mites. PLoS ONE 7: e47269

  7. Ashida M. and Brey P.T. 1998. Recent advances in research on the insect prophenoloxidase cascade. In: Molecular Mechanisms of Immune Responses in Insects (Brey P.T. and Hultmark D., Eds), Chapman and Hall, London UK. pp 135-172

  8. Aumeier P., Rosenkranz P. and Goncalves L.S. 2000. A comparison of the hygienic response of Africanised and European (Apis mellifera carnica) honey bees to Varroa infested brood in tropical Brazil. Genet. Mol. Biol. 23: 787-791

  9. Beggs K.T., Hamilton I.S., Kurshan P.T., Mustard J.A. and Mercer A.R. 2005. Characterisation of a D2 like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect. Biochem. Mol. Biol. 35: 873-882

  10. Behrens D., Huang Q., Geßner C., Rosenkranz P., Frey E., Locke B., Moritz R.F.A. and Kraus F.B. 2011. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 1: 451-458

  11. Blenau W., Erber J. and Baumann A. 1998. Characterisation of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localisation in the brain. J. Neurochem. 70: 15-23

  12. Boecking O. and Ritter W. 1993. Grooming and removal behaviour of Apis mellifera intermissa in Tunisia against Varroa jacobsoni. J. Apicult. Res. 32: 127-134

  13. Boecking O., Bienefeld K. and Drescher W. 2000. Heritability of the Varroa-specific hygienic behaviour in honey bees (Hymenoptera: Apoidae). J. Anim. Breed. Genet. 117: 417-424

  14. Boecking O. and Genersch E. 2008. Varroosis - the on-going crisis in bee keeping. J. Verbraucherschutz Lebensmittelsicherheit 3: 221-228

  15. Bowen-Walker P.L., Martin S.J. and Gunn A. 1999. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invert. Pathol. 73: 101-106

  16. Bull J.C., Ryabov E.V., Prince G., Mead A., Zhang C., Baxter L.A., Pell J.K., Osborne J.L. and Chandler D. 2012. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLOS Pathogenes 8: e1003083

  17. Büchler R. 1994. Varroa tolerance in honey bees - occurrence, characters and breeding. Bee World 49: 6-18

  18. Campbell E.M., Budge G.E. and Bowman A.S. 2010. Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase. Parasites Vectors 3: 73

  19. Cardoen D., Ernst U.R., Vaerenbergh M.V., Boerjan B., de Graaf D.C., Wenseleers T., Schoofs L. and Verleyen P. 2011. Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees. PLos One 6: e20043

  20. Cociancich S., Ghazi A., Hetruc C., Hoffmann J.A. and Letellier L. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268: 19239-19245

  21. Cornman R.S., Schatz M.C., Johnston J.S., Chen Y.-P., Pettis J., Hunt G., Bourgeois L., Elsik C., Anderson D., Grozinger C.M. and Evans J.D. 2010. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11: 602

  22. Cremer S., Armitage S. and Schmid-Hempel P. 2007. Social immunity. Curr. Biol. 17: R693-R702

  23. De Guzman L.I. and Delfinado-Baker M. 1996. A new species of Varroa (Acari: Varroidae) associated with Apis koschevnikovi (Apidae: Hymenoptera) in Borneo. Int. J. Acarol. 22: 23-27

  24. Dekkers J.C.M. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim. Science 82: E313-E328

  25. Delaplane K.S. and Mayer D.F. 2000. Crop Pollination by Bees. CAB, New York

  26. Delfinado-Baker M. and Aggarwal K. 1987. A new Varroa (Acari: Varroidae) from the nest of Apis cerana (Apidae). Int. J. Acarol. 13: 233-237

  27. Delfinado-Baker M., Rath W. and Boecking O. 1992. Phoretic bee mites and honey bee grooming behaviour. Int. J. Acarol. 18: 315-322

  28. Erler S., Popp M. and Lattott H.M.G. 2011. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris). PLoS ONE 6: e18126

  29. Evans J.D. 2006. Beepath: An ordered quantitative-PCR array for exploring honey bee immunity and disease. J. Invert. Pathol. 93: 135-139

  30. Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.-L., Jiang H., Kanost M., Thompson G.J., Zou Z. and Hultmark D. 2006. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15: 645-656

  31. Evans J.D. and Spivak M. 2010. Socialized medicine: Individual and communal disease barriers in honey bees. J. Invert. Pathol. 103: S62-S72

  32. Food and Agriculture Organization of the United Nations (FAO) 2009. FAOSTAT. Accessed 10 Apr 2009

  33. Fraczek R., Zóltowska K. and Lipinski Z. 2009. The activity of nineteen hydrolases in extracts from Varroa destructor and in haemolymph of Apis mellifera carnica worker bees. J. Apicult. Sci. 53: 43-51

  34. Fries I. and Bommarco R. 2007. Possible host-parasite adaptation in honey bee infested by Varroa destructor mites. Apidologie 38: 525-533

  35. Fuchs S. 1994. Nonreproducing Varroa jacobsoni Oud. in honey bee worker cells - status of mites or effects of brood cells? Exp. Appl. Acarol. 18: 309-317

  36. Gallai N., Salles J.-M., Settele J. and Vaissière B.E. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68: 810-821

  37. Garbian Y., Maori E., Kalev H., Shafir S. and Sela I. 2012. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLOS Pathogens 8: e1003035

  38. Garrido C. and Rosenkranz P. 2003. The reproductive program of female Varroa destructor mites is triggered by its host, Apis mellifera. Exp. Appl. Acarol. 31: 269-273

  39. Gregorc A., Evans J.D., Scharf M. and Ellis J.D. 2011. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mite (Varroa destructor). J. Insect Physiol. 58: 1042-1049

  40. Gregory P.G., Evans J.D., Rinderer T. and de Guzman L. 2005. Conditional immune-gene suppression of honeybees parasitized by Varroa mites. J. Insect Science 5: 7

  41. Hall M., Wang R., Antwerpen R., Sottrup-Jensen L. and Söderhäll K. 1999. The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Proc. Natl Acad. Sci. 96: 1965-1970

  42. Harbo J.R. and Hoopingarner R.A. 1997. Honey bee (Hymenoptera: Apidae) in the United States that express resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J. Econ. Entomol. 90: 893-898

  43. Harbo J.R. and Harris J.W. 1999. Heritability in honey bee (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J. Econ. Entomol. 92: 261-265

  44. Harbo J.R. and Harris J.W. 2005. Suppressed mite reproduction explained by the behaviour of adult bees. J. Apicult. Res. 44: 21-23

  45. Harris J.W. 2007. Bees with Varroa Sensitive Hygiene preferentially remove mite infested pupae aged ≤ five days post capping. J. Apicult. Res. Bee World 46: 134-139

  46. Humphries M.A., Mustard J.A., Hunter S.J., Mercer A., Ward V. and Ebert P.R. 2003. Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J. Neurobiol. 55: 315-330

  47. Hunt G.J. and Page R.E.J. 1995. A linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics 139: 1371-1382

  48. Ilyasov R.A., Gaifullina L.R., Saltykova E.S., Poskryakov A.V. and Nikolenko A.G. 2012. Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. J. Apicult. Sci. 56: 115-124

  49. Klaudiny J., Albert S., Bachanová K., Kopernicky J. and Simúth J. 2005. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. Biol. 35: 11-22

  50. Kraus B. and Hunt G. 1995. Differentiation of Varroa jacobsoni Oud. populations by random amplification of polymorphic DNA (RAPD). Apidologie 26: 283-290

  51. Kurtz J. 2005. Specific memory within innate immune systems. Trends Immunol. 26: 186-192

  52. Lai-Fook J. 1966. The repair of wounds in the integument of insects. J. Insect Physiol. 12: 195-226

  53. Lapidge K., Oldroyd B.P. and Spivak M. 2002. Seven suggestive quantitative trait loci influence hygienic behaviour of honey bees. Naturwissenschaften 89: 565-568

  54. Lattorff H.M.G., Moritz R.F.A., Crewe R.M. and Solignac M. 2007. Control of reproductive dominance by the thelytoky gene in honeybees. Biol. Lett. 3: 292-295

  55. Lee G.M., Brown M.J.F. and Oldroyd B.P. 2013. Inbred and outbred honey bee (Apis mellifera) have similar innate immune response. Insect. Soc. 60: 97-102

  56. Lobo N.F., Ton L.Q., Hill C.A., Emore C., Romero-Severson J., Hunt G.J. and Collins F.H. 2003. Genomic analysis in the sting-2 quantitative trait locus for defensive behavior in the honey bee, Apis mellifera. Genome Res. 13: 2588-2593

  57. Locke B. and Fries I. 2011. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42: 533-542

  58. Lourenco A.P., Zufelato M.S., Bitondi M.M.G. and Simoes Z.L.P. 2005. Molecular characterisation of a cDNA encoding prophenoloxidase and its expression in Apis mellifera. Insect Biochem. Mol. Biol. 35: 541-552

  59. Lourenco A.P., Martins J.R., Bitondi M.M.G. and Simoes L.P. 2009. Trade-off between immune stimulation and expression of storage protein genes. Arch. Insect. Biochem. Physiol. 71: 70-87

  60. Lowenberger C.A., Smarth C.T., Bulet P., Ferdig M.T., Severson D.W., Hoffmann J.A. and Christensen B.M. 1999. Insect immunity: molecular cloning, expression, and characterisation of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. Insect Mol. Biol. 8: 107-118

  61. Martel A.-C., Zeggane S., Auriéres C., Drajnudel P., Faucon J.-P. and Aubert M.F.A. 2007. Acaricide residues in honey and was after treatment of honey bee colonies with Apivar® or Asuntol® 50. Apidologie 38: 534-544

  62. Milum V.G. 1947. Grooming dance and associated activities of the honey bee. III. Acad. Sci. Trans. 40: 194-196

  63. Mondragon L., Martin S. and Vandame R. 2006. Grooming dance and associated activities of the honey bee. III. Apidologie 37: 67-74

  64. Moretto G., Gonçalves L.S. and De Jong D. 1993. Heritability of Africanised and European honey bee defensive behaviour against the mite Varroa jacobsoni. Rev. Bras. Genet. 16: 71-77

  65. Moritz R.F.A. and Evans J.D. 2007. Virology and the honey bee. In: Honeybee Breeding and Genomics for Resistance to Virus Infections (Aubert M., Ball B., Fries I., Moritz R.F.A., Milani N. and Bernadellie I., Eds), European Commission, Brussels. pp 347-370

  66. Moritz R.F.A., de Miranda J., Fries I., Le Conte Y., Neumann P. and Paxton R. 2010. Research strategies to improve honeybee health in Europe. Apidologie 41: 227-242

  67. Mustard J.A., Pham P.M. and Smith B.H. 2010. Modulation of motor behaviour by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J. Insect Physiol. 56: 422-430

  68. Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D. and Le Conte Y. 2008. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9: 301

  69. Neve K.A., Seamans J.K. and Trantham-Davidson H. 2004. Dopamine receptor signalling. J. Recept. Signal Transduct. Res. 24: 165-205

  70. Oudemans A.C. 1904. On a new genus and species of parasitic acari. Notes Leyden Museum 24: 216-222

  71. Oxley P.R., Spivak M. and Oldroyd B.P. 2010. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol. Ecol. 19: 1453-1461

  72. Peng Y.S. 1988. The resistance mechanism of the Asian honey bee Apis cerana to the mite Varroa jacobsoni. In: Africanized Honeybees and Bee Mites (Needham G.R., Page R.E., Delfinado-Baker M. and Bowman C.E., Eds), Ellis Horwood, Chichester. pp 426-429

  73. Peng Y.S., Fang Y., Xu S. and Ge L. 1987. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite Varroa jacobsoni Oudemans. J. Invert. Pathol. 49: 54-60

  74. Pettis J.S. 2004. A scientific note on Varroa destructor resistance to coumapos in the United States. Apidologie 35: 91-92

  75. Rawlings R.D. and Barrett A.J. 1993. Evolutionary families of peptides. Biochem. J. 290: 205-218

  76. Richard F.J., Aubert A. and Grozinger C.M. 2008. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biology 6: 50

  77. Rosenkranz P. 1999. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud. in South America. Apidologie 30: 159-172

  78. Rosenkranz P., Tewarson N.C., Singh A. and Engels W. 1993. Differential hygienic behaviour towards Varroa jacobsoni in capped worker brood of Apis cerana depends on alien scent adhering to the mites. J. Apicult. Res. 32: 89-93

  79. Rosenkranz P., Aumeier P. and Ziegelmann B. 2010. Biology and control of Varroa destructor. J. Invert. Pathol. 103: S96-S119

  80. Rothenbuhler W. 1964. Behaviour genetics of nest cleaning behaviour in honeybees I. Response of four inbred lines to disease killed brood. Anim. Behav. 12: 578-583

  81. Royet J., Reichart J.M. and Hoffmann J.A. 2005. Sensing and signalling during infection in Drosophila. Curr. Opin. Immunol. 17: 11-17

  82. Ruttner F., Marx H. and Marx G. 1984. Beobachtungen über eine mögliche Anpassung von Varroa Jacobsoni an Apis mellifera L. in Uruguay. Apidologie 15: 43-62

  83. Ruttner F. and Hänel H. 1992. Active defence against Varroa mites in a Carniolan stain of honeybee (Apis mellifera carnica Pollmann). Apidologie 23: 173-187

  84. Schmid-Hempel P. 2005. Evolutionary ecology of insect immune defence. Annu. Rev. Entomol. 50: 529-551

  85. Spivak M. and Reuter G.S. 1998. Performance of hygienic honey bee colonies in a commercial apiary. Apidologie 29: 291-302

  86. Stanimirovic Z., Stevanovic J., Mirilovic M. and Stojic V. 2008. Heritability of hygienic behaviour in grey honey bee (Apis mellifera carnica). Acta Veter. 58: 593-601

  87. Stanimirovic Z., Stevanovic J., Aleksic N. and Stojic V. 2010. Heritability of grooming behaviour in grey honey bee (Apis mellifera carnica). Acta Veter. 60: 313-323

  88. Strand M.R. 2008. The insect cellular immune response. Insect Science 15: 1-14

  89. Stroschein-Stevenson S.L., Foley E., O’Farrell P.H. and Johnson A.D. 2009. Phagocytosis of Candida albicans by RNAi-treated Drosophila S2 cells. Methods Mol. Biol. 470: 347-358

  90. Tsurada J.M., Harris J.W., Bourgeois L., Danka R.G. and Hunt G.J. 2012. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behaviour in honey bees. PLoS ONE 7: e48276

  91. van Engelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R. and Pettis J.S. 2009. Colony collapse disorder: A descriptive study. PLoS ONE 4: e6481

  92. Webster T.C. and Delaplane K.S. 2001 Mites of the Honey Bee. Dadant and Sons Inc., Hamilton Illinois

  93. Weinstock G.M., Robinson G.E., Gibbs R.A., Worley K.C., Evans J.D., Maleszka R., Robertson H.M., Weaver D.B., Beye M., Carninci P. et al. 2006. Insights into social insects from the genome of the honey bee Apis mellifera. Nature 443: 931-949

  94. Zhang Y., Liu X., Zhang W. and Han R. 2010. Differential gene expression of the honey bee Apis mellifera and Apis cerana induced by Varroa destructor infection. J. Insect Physiol. 56: 1207-1218

  95. Zou Z., Lopes D.L., Kanost M.R., Evans J.D. and Jiang H. 2006. Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Mol. Biol. 15: 603-614

  96. Zufelato M.S., Lourenco A.P., Simoes Z.L.P., Jorge J.A. and Bitondi M.M.G. 2004. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34: 1257-1268

Download references


The publication is supported by the TÁMOP-4.2.2/B-10/1-2010-0024 project. The project is co-financed by the European Union and the European Social Fund. The manuscript has been proofread by Proof-Reading Service and Dr. Matthew Baranski as native English speaker. Authors thank three anonymous reviewers for their helpful comments.

Author information

Correspondence to Sz. Kusza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zakar, E., Jávor, A. & Kusza, S. Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.). Insect. Soc. 61, 207–215 (2014).

Download citation


  • Varroa destructor
  • Tolerance behaviours
  • Candidate genes
  • QTL
  • Gene expression