Skip to main content

Virgin wasps develop ovaries on par with mated females, but lay fewer eggs


In the primitively eusocial wasp Ropalidia marginata, mating is not necessary for a female wasp to develop her ovaries, lay eggs, and even to become the sole egg layer of her colony despite the presence of other mated nestmates. Here, we show that virgin wasps do not differ from their mated counterparts in the extent and rapidity of their ovarian development, in the proportion of individuals that build a nest and laid eggs, and in the time taken to do so. However, a significantly larger proportion of virgin females showed resorbing oocytes, and laid fewer eggs as compared to mated individuals. Thus, virgin females have the ability to develop ovaries and lay eggs but also to refrain from necessarily laying all mature eggs produced, before mating opportunities arise. This dual ability would be adaptive in haplodiploid, tropical species with perennial nesting cycles and frequent opportunities for workers to become replacement queens or solitary nest foundresses throughout the year.

This is a preview of subscription content, access via your institution.

Fig. 1


  • Arnqvist G. and Nilsson T. 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60: 145–164

    Google Scholar 

  • Bloch Qazi M., Heifetz Y. and Wolfner M. 2003. The developments between gametogenesis and fertilisation: ovulation and female sperm storage in Drosophila melanogaster. Dev. Biol. 256: 195–211

    Google Scholar 

  • Bourke A.F.G. 1988. Worker reproduction in the higher eusocial Hymenoptera. Q. Rev. Biol. 63: 291–311

    Google Scholar 

  • Chandrashekara K. and Gadagkar R. 1991a. Behavioral castes, dominance and division of labour in a primitively eusocial wasp. Ethology 87: 269–283

  • Chandrashekara K. and Gadagkar R. 1991b. Unmated queens in the primitively eusocial wasp Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Insect. Soc. 38: 213–216

  • Chandrashekara K. and Gadagkar R. 1992. Queen succession in the primitively eusocial tropical wasp Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). J. Insect Behav. 5: 193–209

    Google Scholar 

  • Davey K.G. 1997. Hormonal controls on reproduction in female Heteroptera. Arch. Insect Biochem. 35: 443–453

    Google Scholar 

  • de Souza E.A., Neves C.A., Campos L.A.O., Aanuncio J.C. and Serrao J.E. 2007. Effect of mating delay on the ovary of Melipona quadrifasciata anthidioides (Hymenoptera: Apidae) queens. Micron 38: 471–477

    Google Scholar 

  • Downing H.A. 2004. Effect of mated condition on dominance interactions and nesting behavior in the social wasp, Polistes fuscatus (Hymenoptera: Vespidae). J. Kansas Entomol. Soc. 77: 288–291

    Google Scholar 

  • Dropkin J.A. and Gamboa G.J. 1981. Physical comparisons of foundresses of the paper wasp, Polistes metricus (Hymenoptera: Vespidae). Can. Entomol. 113: 457–461

  • Gadagkar R. 2001. The Social Biology of Ropalidia marginata: Toward Understanding the Evolution of Eusociality. Harvard University Press, Cambridge, Massachusetts

  • Gadagkar R., Bhagavan S., Malpe R. and Vinutha C. 1991a. Seasonal variation in the onset of egg laying in a primitively eusocial wasp: implications for the evolution of sociality. Entomon 16: 167–174

  • Gadagkar R., Bhagavan S., Chandrashekara K. and Vinutha C. 1991b. The role of larval nutrition in pre-imaginal biasing of caste in the primitively eusocial wasp Ropalidia marginata (Hymenoptera: Vespidae). Ecol. Entomol. 16: 435–440

  • Gadagkar R., Chandrashekara K., Chandran S. and Bhagavan S. 1993. Serial polygyny in the primitively eusocial wasp Ropalidia marginata: implications for the evolution of sociality. In: Queen Number and Sociality in Insects (Keller L., Ed), Oxford University Press, Oxford. pp 188–214

  • Gadagkar R., Gadgil M., Joshi N.V. and Mahabal A.S. 1982. Observations on the natural history and population ecology of the social wasp Ropalidia marginata (Lep.) from peninsular India (Hymenoptera: Vespidae). Proc. Indian Acad. Sciences (Animal Sciences) 91: 539–552

  • Gadagkar R., Vinutha C., Shanbhogue A. and Gore A.P. 1988. Pre-imaginal caste biasing of caste in a primitively eusocial insect. Proc. R. Soc. Lond. B Biol. 233: 175–189

    Google Scholar 

  • Gobin B., Peeters C. and Billen J. 1998. Production of trophic eggs by virgin workers in the ponerine ant Gnamptogenys menadensis. Physiol. Entomol. 23: 329–336

    Google Scholar 

  • Harrell F.E. Jr. 2013. Rms: Regression modeling strategies. R package version 3.6-3

  • Horner V.L. and Wolfner M.F. 2008. Transitioning from egg to embryo: triggers and mechanism of egg activation. Dev. Dynam. 237: 527–544

    Google Scholar 

  • Henter H.J. 2003. Inbreeding depression and halpodiploidy: experimental measures in a parastioid and comparisons across diploid and haplodiploid insect taxa. Evolution 57: 1793–1803

    Google Scholar 

  • Jemielity S., Graff J. and Keller L. 2006. How to fool a virgin: Artificial dealation triggers oviposition in virgin Lasius niger queens. Insect. Soc. 53: 323–325

    Google Scholar 

  • Karsai I. and Hunt J.H. 2002. Food quantity affects traits of offspring in the paper wasp Polistes metricus (Hymenoptera: Vespidae). Environ. Entomol. 31: 99–106

    Google Scholar 

  • King P.E.1962. The effect of resorbing eggs upon the sex ratio of the offspring in Nasonia vitripennis (Hymenoptera, Pteromalidae). J. Exp. Biol. 39: 161–165

    Google Scholar 

  • Melo G.A.R., Buschini M.L.T. and Campos L.A.O. 2001. Ovarian activation in Melipona quadrifasciata queens triggered by mating plug stimulation. Apidologie 32: 355–361

    Google Scholar 

  • Muralidharan K., Shaila M.S. and Gadagkar R. 1986. Evidence for multiple mating in the primitively eusocial wasp Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). J. Genet. 65: 153–158

    Google Scholar 

  • Ohgushi T. 1996. A reproductive trade-off in an herbivorous lady beetle: egg resorption and female survival. Oecologia 106: 345–351

    Google Scholar 

  • Pardi L. and Marino Piccioli M.T. 1970. Studi sulla biologia di Belanogaster griseus (Hymenoptera: Vespidae). 2. Differenziamento castale incipiente in B. griseus (Fab.). Mon. Ital. Zool. 3: 235–265

  • Peer K. and Taborsky M. 2005. Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution 59: 317–323

    Google Scholar 

  • Patricio K. and Cruz-Landim C. 2007. Effect of mating delay in the ovary of Apis mellifera queens: histological aspects. Braz. J. Morphol. Sci. 24: 25–28

    Google Scholar 

  • Peeters C. and Crewe R.M. 1984. Insemination controls the reproductive division of labour in a ponerine ant. Naturwissenschaften 71: 50–51

    Google Scholar 

  • Peso M., Niño E.L., Grozinger C.M. and Barron A.B. 2013. Effect of honey bee queen mating condition on worker ovary activation. Insect. Soc. 60: 123–133

    Google Scholar 

  • Pinheiro J., Bates D., DebRoy S., Sarkar D. and the R Development Core Team. 2013. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–108

  • Plateaux-Quénu C. and Packer L. 1998. A test of the mating limitation hypothesis for caste determination in Evylaeus albipes (Hymenoptera: Halictidae), a primitively eusocial Halictine bee. J. Insect Behav. 11: 119–128

    Google Scholar 

  • R Development Core Team 2012. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Raabe M. 1986. Insect reproduction: regulation of successive steps. In: Advances in Insect Physiology (Evans P.D. and Wigglesworth V.B., Eds), Academic Press, London. pp 30–154

  • Richards M.H. and Packer L. 1996. The sociobiology of body size variation in the primitively eusocial sweat bee, Halictus ligatus (Hymenoptera: Halictidae). Oikos 77: 68–76

    Google Scholar 

  • Saito Y., Sahara K. and Mori K. 2000. Inbreeding depression by recessive deleterious genes affecting female fecundity of a haplo-diploid mite. J. Evol. Biol. 13: 668–678

    Google Scholar 

  • Sen R., Samudre S., Shilpa M.C., Chitra Tarak R. and Gadagkar R. 2010. Middle aged wasps mate throughout most of the year, without regard to body size, ovarian development and nestmateship: a laboratory study of the primitively eusocial wasp Ropalidia marginata. Insect. Soc. 57: 95–103

    Google Scholar 

  • Shilpa M.C., Sen R. and Gadagkar R. 2010. Nestmateship and body size do not influence mate choice in males and females: A laboratory study of a primitively eusocial wasp Ropalidia marginata. Behav. Proc. 85: 42–46

    Google Scholar 

  • Shilpa M.C., Sen R., Samudre S. and Gadagkar R. 2012. Males, but not females, mate with multiple partners: a laboratory study of a primitively eusocial wasp Ropalidia marginata. Insect. Soc. 59: 61–65

    Google Scholar 

  • Shukla S., Chandran S. and Gadagkar R. 2013. Ovarian developmental variation in the primitively eusocial wasp Ropalidia marginata suggests a gateway to worker ontogeny and the evolution of sociality. J. Exp. Biol. 216: 181–187

    Google Scholar 

  • Suzuki T. 1997. Worker mating in queen-right colonies of a temperate paper wasp. Naturwissenschaften 84: 304–305

    Google Scholar 

  • Tanaka E.D. and Hartfelder K. 2004. The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes. Arthropod Struct. Dev. 33: 431–442

    Google Scholar 

  • Werren J.H. 1993. The evolution of inbreeding in haplodiploid organisms. In: The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives (Thornhill N., Ed), University of Chicago Press, Chicago. pp 42–59

  • West-Eberhard M.J. 1969. The social biology of the polistine wasps. Misc. Publ. Mus. Zool. Univ. Mich. 140: 1–101

    Google Scholar 

  • Yanega D. 1992. Does mating determine caste in sweat bees? (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 65: 231–237

    Google Scholar 

  • Yanega D. 1997. Demography and sociality in Halictine bees (Hymenoptera: Halictidae). In: The Evolution of Social Behavior in Insects and Arachnids (Crespi B.J. and Choe J., Eds). Cambridge University Press, Cambridge, pp 293–315

Download references


This work was supported by grants from the Department of Science and Technology, Department of Biotechnology, the Council of Scientific and Industrial Research, and the Ministry of Environment and Forests, Government of India. RG and SS designed the study, SS performed dissections and data analysis, MCS carried out behavioural observations, body size measurements and maintained wasps, RG supervised the work and SS and RG co-wrote the paper. We thank Ruchira Sen and two anonymous referees for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Gadagkar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shukla, S., Shilpa, M.C. & Gadagkar, R. Virgin wasps develop ovaries on par with mated females, but lay fewer eggs. Insect. Soc. 60, 345–350 (2013).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Eusociality
  • Mating
  • Ovarian development
  • Virgin females
  • Nest initiation