Skip to main content
Log in

Sociogenetic organisation of two desert ants

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Desert ants of the genus Cataglyphis evolved a remarkable diversity in their reproductive strategies. In Cataglyphis species where social organisation was described so far, colonies are headed by one or multiple queens, queens being singly or multiply mated, and workers and/or queens possess the ability to reproduce asexually via thelytokous parthenogenesis. Here, we investigate the social organisation of C. bombycina (group bombycinus) and C. theryi (group albicans) using highly polymorphic microsatellite markers. Our results show that both species are characterized by monogynous colonies and multiply mated queens, supporting the idea that polyandry is an ancestral trait of the genus. No evidence for parthenogenetic reproduction by queens was found. One distinctive feature of the species C. bombycina among the genus is the presence of a morphologically distinct soldier caste, with highly developed scythe blades jaws. In the only colony where a significant number of soldiers have been sampled, the distribution of patrilines is fundamentally different between the soldier and the worker caste. This result suggests a genetic contribution to worker caste determination in this species, and certainly awaits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agosti D. 1990. Review and reclassification of Cataglyphis (Hymenoptera, Formicidae). J. Nat. Hist. 24: 1457–1505

    Google Scholar 

  • Amor F., Ortega P., Jowers M.J., Cerda X., Billen J., Lenoir A. and Boulay R.R. 2011. The evolution of worker-queen polymorphism in Cataglyphis ants: interplay between individual- and colony-level selections. Behav. Ecol. Sociobiol. 65: 1473–1482

    Google Scholar 

  • Arnqvist G. and Nilsson T. 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60: 145–164

    Google Scholar 

  • Aron S., Timmermans I. and Pearcy M. 2011. Ant queens adjust egg fertilization to benefit from both sexual and asexual reproduction. Biol. Lett. 7: 571–573

    Google Scholar 

  • Avise J.C. 2008. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals. Oxford University Press, Oxford

  • Baer B., Armitage SAO. and Boomsma J.J. 2006. Sperm storage induces an immunity cost in ants. Nature 441: 872–875

    Google Scholar 

  • Baer B. and Schmid-Hempel P. 1999. Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397: 151–154

    Google Scholar 

  • Boomsma J.J., Kronauer D.J.C. and Pedersen J.S. 2009. The evolution of social insect mating systems. In: Organization of Insect SocietiesFrom Genome to Sociocomplexity (Gadau J. and Fewell J., Eds). Harvard University Press, Cambridge, Massachusetts, pp 3–25

  • Boomsma J.J. and Ratnieks F.L.W. 1996. Paternity in eusocial Hymenoptera. Phil. Trans. R. Soc. B. 351: 947–975

    Google Scholar 

  • Brown M.J.F. and Schmid-Hempel P. 2003. The evolution of female multiple mating in social Hymenoptera. Evolution 57: 2067–2081

    Google Scholar 

  • Cagniant H. 1973. Apparition d’ouvrières à partir d’oeufs pondus par des ouvrières chez la fourmi Cataglyphis cursor Fonscolombe (Hymenoptères, Formicidae). C.R. Hebd. Seanc. Acad. Sci. Ser. D. Sci. Nat. 277: 2197–2198

  • Cagniant H. 2009. Le genre Cataglyphis Foerster, 1850 au Maroc (Hyménoptères Formicidae). Orsis 24: 41–71

    Google Scholar 

  • Cerdá X. 2001. Behavioural and physiological traits to thermal stress tolerance in two Spanish desert ants. Etologia 9: 15–27

    Google Scholar 

  • Chapman T., Liddle L.F., Kalb J.M., Wolfner M.F. and Partridge L. 1995. Cost of mating in Drosophila melanogaster females is mediated by male accessory-gland products. Nature 373: 241–244

    Google Scholar 

  • Cheron B., Cronin A.L., Doums C., Federici P., Haussy C., Tirard C. and Monnin T. 2011. Unequal resource allocation among colonies produced by fission in the ant Cataglyphis cursor. Ecology 92: 1448–1458

    Google Scholar 

  • Clémencet J., Viginier B. and Doums C. 2005 Hierarchical analysis of population genetic structure in the monogynous ant Cataglyphis cursor using microsatellite and mitochondrial DNA markers. Mol. Ecol. 14: 3735–3744

    Google Scholar 

  • Cronin A., Molet M., Doums C., Monnin T. and Peeters C. 2013. Recurrent evolution of dependent colony foundation across eusocial insects. Annu. Rev. Entomol. 58: 37–55

    Google Scholar 

  • Crozier R.H. and Fjerdingstad E.J. 2001 Polyandry in social Hymenoptera—disunity in diversity? Ann. Zool. Fennici 38: 267–285

    Google Scholar 

  • Crozier R.H. and Page R.E. 1985. On being the right size—Male contributions and multiple mating in social Hymenoptera. Behav. Ecol. Sociobiol. 18: 105–115

    Google Scholar 

  • Crozier R.H. and Pamilo P. 1996. Evolution of Social Insect Colonies, Sex Allocation and Kin-Selection. Oxford series in ecology and evolution. Oxford University Press, Oxford

  • Dartigues D. and Lenoir A. 1990 La ponte des ouvrières Cataglyphis F (Hymenoptera: Formicidae): mise en évidence d’une parthénogenèse thélytoque. Ann. Soc. Entomol. Fr. 26: 121–123

    Google Scholar 

  • Délye G. 1956. Ecologie de quelques fourmis dans les régions humides de l’Algérie (Camponotus alii For.; C. sylviaticus Ol.; Aphaenogaster testaceopilosa Lucas). Bull. Soc. Hist. Nat. Afr. Nord. 47: 191–199

  • Délye G. 1957. Observations sur la fourmi saharienne Cataglyphis bombycina Rog. Insect. Soc. 4: 77–82

  • den Boer S.P.A., Baer B. and Boomsma J.J. 2010. Seminal fluid mediates ejaculate competition in social insects. Science 327: 1506–1509

    Google Scholar 

  • Evison S.E.F. and Hughes W.O.H. 2011. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98: 643–649

    Google Scholar 

  • Eyer P.A., Leniaud L., Darras H. and Aron S. 2013. Hybridogenesis through thelytokous parthenogenesis in two Cataglyphis desert ants. Mol. Ecol. 22: 947–955

    Google Scholar 

  • Fjerdingstad E.J. 2012. Multiple mating and offspring quality in Lasius ants. Insect. Soc. 59:183–191

    Google Scholar 

  • Fraser V.S., Kaufmann B., Oldroyd B.P. and Crozier R.H. 2000. Genetic influence on caste in the ant Camponotus consobrinus. Behav. Ecol. Sociobiol. 47: 188–194

    Google Scholar 

  • Goudet J. 1995. FSTAT (vers 1.2): A computer program to calculate F-statistics. J. Heredity 86: 485–486

    Google Scholar 

  • Hardy O.J., Pearcy M. and Aron S. 2008. Small-scale spatial genetic structure in an ant species with sex-biased dispersal. Biol. J. Linn. Soc. 93: 465–473

    Google Scholar 

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press, Cambridge, Mass

  • Holman L., Sturup M., Trontti K. and Boomsma J.J. 2011. Random sperm use and genetic effects on worker caste fate in Atta colombica leaf-cutting ants. Mol. Ecol. 20: 5092–5102

    Google Scholar 

  • Hughes W.O., Sumner S., Van Borm S. and Boomsma J.J. 2003. Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc. Natl. Acad. Sci. USA. 100: 9394–9397

    Google Scholar 

  • Jaffé R., Kronauer D.J., Kraus F.B., Boomsma J.J. and Moritz R.F.A. 2007. A genetic component to worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3: 513–516

    Google Scholar 

  • Jennions M.D. and Petrie M. 2000. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75: 21–64

    Google Scholar 

  • Jones T.H., Clark D.A., Edwards A.A., Davidson D.W., Spande T.F. and Snelling R.R. 2004. The chemistry of exploding ants, Camponotus spp. (cylindricus complex). J. Chem. Ecol. 30: 1479–1492

  • Jowers M.J., Leniaud L., Cerdá X., Alasaad S., Caut S., Amor F., Aron S. and Boulay R. Social and population structure in the ant Cataglyphis emmae: Adaptive mating strategies and dispersal. PLoS ONE, submitted

  • Keller L. 1991. Queen number, mode of colony founding, and queen reproductive success in ants (Hymenoptera Formicidae). Ethol. Ecol. Evol. 3: 307–316

    Google Scholar 

  • Knaden M., Tinaut A., Stokl J., Cerda X. and Wehner R. 2012. Molecular phylogeny of the desert ant genus Cataglyphis (Hymenoptera: Formicidae). Myrmecol. News 16: 123–132

    Google Scholar 

  • Knaden M. and Wehner R. 2006. Fundamental difference in life history traits of two species of Cataglyphis ants. Front. Zool. 3: 21

    Google Scholar 

  • Leniaud L., Darras H., Boulay R. and Aron S. 2012. Social hybridogenesis in the clonal ant Cataglyphis hispanica. Curr. Biol. 22: 1188–1193

    Google Scholar 

  • Leniaud L., Heftez A., Grumiau L. and Aron S. 2011. Multiple mating and supercoloniality in Cataglyphis desert ants. Biol. J. Lin. Soc. 104: 866–876

    Google Scholar 

  • Lenoir A., Quérard L., Pondicq N. and Berton F. 1988. Reproduction and dispersal in the ant Cataglyphis cursor (Hymenoptera, Formicidae). Psyche 95: 21–44

  • Maichier V. 2012. Origine évolutive d’un nouveau phénotype chez Cataglyphis bombycina: une étude morphométrique. Dissertation, Université Pierre et Marie Curie

  • Mattila H.R. and Seeley T.D. 2007. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317: 362–364

    Google Scholar 

  • Nielsen R., Tarpy D.R. and Reeve H.K. 2003. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 12: 3157–3164

    Google Scholar 

  • Pearcy M., Aron S., Doums C. and Keller L. 2004a. Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306: 1780–1783

  • Pearcy M., Clemencet J., Chameron S., Aron S. and Doums C. 2004b. Characterization of nuclear DNA microsatellite markers in the ant Cataglyphis cursor. Mol. Ecol. Notes 4: 642–644

  • Pearcy M., Timmermans I., Allard D. and Aron S. 2009. Multiple mating in the ant Cataglyphis cursor: testing the sperm limitation and the diploid male load hypotheses. Insect. Soc. 56: 94–102

    Google Scholar 

  • Pisarski B. 1965. Les fourmis du genre Cataglyphis en Irak (Hymenoptera Formicidae). Bull. Ac. Pol. Sc-Series Sc. Biol. 13: 417

    Google Scholar 

  • Queller D.C and Goodnight K.F. 1989. Estimating relatedness using genetic-markers Evolution 43: 258–275

    Google Scholar 

  • Ratnieks F.L.W. 1988. Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am. Nat. 132: 217–236

    Google Scholar 

  • Ratnieks F.L.W. 1989. Conflict and cooperation in insect societies. Ph.D. dissert, Cornell University, Ithaca

  • Ratnieks F.L.W. and Boomsma J.J. 1995. Facultative sex allocation by workers and the evolution of polyandry by queens in social Hymenoptera. Am. Nat. 145: 969–993

    Google Scholar 

  • Ratnieks F.L.W., Foster K.R. and Wenseleers T. 2006. Conflict resolution in insect societies. Annu. Rev. Entomol. 51: 581–608

    Google Scholar 

  • Rheindt F.E., Strehl C.P. and Gadau J. 2005. A genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insect. Soc. 52: 163–168

    Google Scholar 

  • Robinson G.E. and Page R.E. 1988. Genetic determination of guarding and undertaking in honeybee colonies. Nature 333: 356–358

    Google Scholar 

  • Rousset F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228

    Google Scholar 

  • Rousset F. 2008. Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103–106

    Google Scholar 

  • Schmid-Hempel P. 1998. Parasites in Social Insects. Princeton University Press, Princeton

  • Schwander T. and Keller L. 2012. Evolution: sociality as a driver of unorthodox reproduction. Curr. Biol. 22: R525–R527

    Google Scholar 

  • Schwander T., Rosset H. and Chapuisat M. 2005. Division of labour and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav. Ecol. Sociobiol. 59: 215–221

    Google Scholar 

  • Seeley T.D. and Tarpy D.R. 2007. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B. 274: 67–72

    Google Scholar 

  • Sherman P.W., Seeley T.D. and Reeve H.K. 1988. Parasites, pathogens, and polyandry in social Hymenoptera. Am. Nat. 131: 602–610

    Google Scholar 

  • Slatyer R.A., Jennions M.D. and Backwell P.R.Y. 2012a. Polyandry occurs because females initially trade sex for protection. Anim. Behav. 83: 1203–1206

  • Slatyer R.A., Mautz B.S., Backwell P.R.Y. and Jennions M.D. 2012b. Estimating genetic benefits of polyandry from experimental studies: a meta-analysis. Biol. Rev. 87: 1–33

  • Timmermans I., Grumiau L., Hefetz A. and Aron S. 2010. Mating system and population structure in the desert ant Cataglyphis livida. Insect. Soc. 57: 39–46

    Google Scholar 

  • Timmermans I., Hefetz A., Fournier D. and Aron S. 2008. Population genetic structure, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis sabulosa. Heredity 101: 490–498

    Google Scholar 

  • Trivers R.L. and Hare H. 1976. Haplodipoidy and the evolution of the social insects. Science 191: 249–263

    Google Scholar 

  • Van Oosterhout C., Hutchinson W.F., Wills D.P.M. and Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535–538

    Google Scholar 

  • Walsh P.S., Metzger D.A. and Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Bio.Techniques 10: 506–513

    Google Scholar 

  • Wang J.L. 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166: 1963–1979

    Google Scholar 

  • Wenseleers T. and Ratnieks F.L.W. 2006. Comparative analysis of worker reproduction and policing in eusocial Hymenoptera supports relatedness theory. Am. Nat. 168: E163–E179

    Google Scholar 

Download references

Acknowledgments

We thank A. Tinaut, R. Boulay and M. Jowers for their help in field sampling and L. Lechevalier for technical assistance. This work was supported by grants from the Belgian FRS-FNRS (L. L. and M. P.) and Action de Recherché Concertée (S. A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Leniaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leniaud, L., Pearcy, M. & Aron, S. Sociogenetic organisation of two desert ants. Insect. Soc. 60, 337–344 (2013). https://doi.org/10.1007/s00040-013-0298-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-013-0298-2

Keywords

Navigation