Skip to main content

Advertisement

Log in

A common antifungal defense strategy in Cryptocercus woodroaches and termites

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

We identified and characterized Gram-negative bacteria binding proteins (GNBPs) and their predicted antifungal activity in the woodroach Cryptocercus punctulatus. C. punctulatus is likely to share many characteristics with the subsocial ancestor of the Isoptera, including allogrooming, which facilitated the evolution of termite sociality. Based on a phylogenetic analysis, an ancestral GNBP with an intact β-1,3-glucanase active site appears to have duplicated in a common ancestor of subsocial Cryptocercus woodroaches and termites. In termites, the secreted β-1,3-glucanase activity of GNBPs provides important prophylactic protection from fungal pathogens such as Metarhizium anisopliae, which can evade the immune system after entering the insect. Here, we identify β-1,3-glucanase activity on the cuticular surface of C. punctulatus that originates from the salivary gland and is likely spread by allogrooming. Cuticular washes have antifungal activity against M. anisopliae conidia that is suppressed by an inhibitor (GDL) of termite GNBP β-1,3-glucanase activity. C. punctulatus nymphs that are treated with GDL and subsequently exposed to M. anisopliae conidia show significantly greater mortality than the untreated nymphs exposed to conidia. A molecular evolutionary analysis of GNBPs in two species of Parcoblatta, Periplaneta americana, C. punctulatus and representative termites indicates that selection-directed change in a glycosylphosphatidylinositol (GPI) anchor region. Modification of the GPI anchor region may have been instrumental in the evolution of an antifungal defense strategy that depends on the external secretion of GNBPs from the salivary gland and their dissemination by grooming. This strategy may have helped compensate for the vulnerability of a subsocial woodroach-like ancestor to fungal disease that results from prolonged development with a thin cuticle and facilitated the transition to termite eusociality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldrich B., Krafsur E. and Kambhampati S. 2004. Species-specific allozyme markers for Appalachian wood-feeding cockroaches (Dictyoptera: Cryptocercidae). Biochem. Genet. 42: 149-164

    Google Scholar 

  • Beattie A., Turnbull C., Hough T. and Knox B. 1986. Antibiotic production: a possible function for the metapleural gland of ants (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 79: 448-450

    Google Scholar 

  • Bell W.J., Roth L.M. and Nalepa C.A. 2007. Cockroaches: Ecology, Behavior, and Natural History. Johns Hopkins University Press, Baltimore

  • Bragatto I., Genta F., Ribeiro A., Terra W. and Ferreira C. 2010. Characterization of a β-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. Insect Biochem. Mol. Biol. 40: 861-872

    Google Scholar 

  • Bulmer M.S. 2010. Evolution of immune proteins in insects. In: Encyclopedia of Life Sciences, John Wiley & Sons, Ltd: Chichester http://www.els.net/ [DOI:10.1002/9780470015902.a0022889]

  • Bulmer M.S., Bachelet I., Raman R., Rosengaus R.B. and Sasisekharan R. 2009. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc. Natl Acad. Sci. USA 106: 12652-12657

    Google Scholar 

  • Bulmer M.S. and Crozier R.H. 2006. Variation in positive selection in termite GNBPs and Relish. Mol. Biol. Evol. 23: 317-326

    Google Scholar 

  • Bulmer M.S., Lay F. and Hamilton C. 2010. Adaptive evolution in subterranean termite antifungal peptides. Insect Mol. Biol. 19: 669-674

    Google Scholar 

  • Chouvenc T., Su N.Y. and Robert A. 2010. Inhibition of the fungal pathogen Metarhizium anisopliae in the alimentary tracts of five termite (Isoptera) species. FLA Entomol. 93: 467-469

    Google Scholar 

  • Delport W., Poon A.F.Y., Frost S.D.W. and Kosakovsky Pond S.L. 2010. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26: 2455-2457

    Google Scholar 

  • Eisenhaber B., Bork P. and Eisenhaber F. 1998. Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng. Des. Sel. 11: 1155

    Google Scholar 

  • Eisenhaber B., Bork P. and Eisenhaber F. 1999. Prediction of potential GPI-modification sites in proprotein sequences. J. Mol. Biol. 292: 741-758

    Google Scholar 

  • Emanuelsson O., Brunak S., von Heijne G. and Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953-971

    Google Scholar 

  • Engel M.S., Grimaldi D.A. and Krishna K. 2009. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am. Mus. Novit. 3650: 1-27

    Google Scholar 

  • Fernandez-Marin H., Zimmerman J.K., Rehner S.A. and Wcislo W.T. 2006. Active use of the metapleural glands by ants in controlling fungal infection. Proc. R. Soc. London Ser. B 273: 1689-1695

    Google Scholar 

  • Gillespie J.P., Bailey A.M., Cobb B. and Vilcinskas A. 2000. Fungi as elicitors of insect immune responses. Arch. Insect Biochem. Physiol. 44: 49-68

    Google Scholar 

  • Hamilton C. and Bulmer M.S. 2012. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Dev. Comp. Immunol. 36: 372-377

    Google Scholar 

  • Hamilton C., Lay F. and Bulmer M.S. 2011. Subterranean termite prophylactic secretions and external antifungal defenses. J. Insect Physiol. 57: 1259-1266

    Google Scholar 

  • Hart G. 1999. Glycophospholipid Anchors. In: Essentials of Glycobiology (Varki, A., Cummings R. and Esko J., Eds). Cold Spring Harbor Laboratory Press

  • Hebard M. 1917. The Blattidae of North America: North of the Mexican Boundary. American Entomological Society

  • Henikoff S., Henikoff J.G., Alford W.J. and Pietrokovski S. 1995. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163: GC17-GC26

  • Huelsenbeck J.P. and Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755

    Google Scholar 

  • Hughes W.O.H., Thomsen L., Eilenberg J. and Boomsma J.J. 2004. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 85: 46-53

    Google Scholar 

  • Inward D., Beccaloni G. and Eggleton P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3: 331-335

    Google Scholar 

  • Jiggins F.M. and Hurst G.D. 2003. The evolution of parasite recognition genes in the innate immune system: purifying selection on Drosophila melanogaster peptidoglycan recognition proteins. J. Mol. Evol. 57: 598-605

    Google Scholar 

  • Kalix S. and Buchenauer H. 1995. Direct detection of β-1,3-glucanase in plant extracts by polyacrylamide gel electrophoresis. Electrophoresis 16: 1016-1018

    Google Scholar 

  • Kambhampati S. 1995. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc. Natl Acad. Sci. USA 92: 2017-2020

    Google Scholar 

  • Kim Y.S., Ryu J.H., Han S.J., Choi K.H., Nam K.B., Jang I.H., Lemaitre B., Brey P.T. and Lee W.J. 2000. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1, 3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 275: 32721-32727

    Google Scholar 

  • Kosakovsky Pond S.L. and Frost S.D.W. 2005. Not so different after all: A comparison of methods for detecting amino-acid sites under selection. Mol. Biol. Evol. 22: 1208-1222

    Google Scholar 

  • Kosakovsky Pond S.L., Frost S.D.W. and Muse S.V. 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676-679

    Google Scholar 

  • Krishna K. 1970. Taxonomy, phylogeny, and distribution of termites. In: Biology of Termites (Krishna K. and Weesner F.M., Eds), vol 2. Academic Press, New York, NY, pp 127-152

  • Lamberty M., Zachary D., Lanot R., Bordereau C., Robert A., Hoffmann J.A. and Bulet P. 2001. Insect immunity - Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J. Biol. Chem. 276: 4085-4092

    Google Scholar 

  • Lazzaro B. 2008. Natural selection on the Drosophila antimicrobial immune system. Curr. Op. Microbiol. 11: 284-289

    Google Scholar 

  • Lee W.J., Lee J.D., Kravchenko V.V., Ulevitch R.J. and Brey P.T. 1996. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 93: 7888-7893

    Google Scholar 

  • Lemaitre B. and Hoffmann J. 2007. The host defense of Drosophila melanogaster. Ann. Rev. Immunol. 25: 697-743

    Google Scholar 

  • Little T.J., Colbourne J.K. and Crease T.J. 2004. Molecular evolution of Daphnia immunity genes: Polymorphism in a gram-negative binding protein gene and an alpha-2-macroglobulin gene. J. Mol. Evol. 59: 498-506

    Google Scholar 

  • Lo N., Tokuda G., Watanabe H., Rose H., Slaytor M., Maekawa K., Bandi C. and Noda H. 2000. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol. 10: 801-804

    Google Scholar 

  • Maschwitz U. 1974. Vergleichende Untersuchungen zur Funktion der Ameisenmetathorakaldrüse. Oecologia 16: 303-310

    Google Scholar 

  • Mayor S. and Riezman H. 2004. Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell. Biol. 5: 110-120

    Google Scholar 

  • Miura T., Maekawa K., Kitade O., Abe T. and Matsumoto T. 1998. Phylogenetic relationships among subfamilies in higher termites (Isoptera, Termitidae) based on mitochondrial COII gene sequences. Ann. Entomol. Soc. Am. 91: 515-523

    Google Scholar 

  • Nalepa C.A. 1988a. Cost of parental care in the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav. Ecol. Sociobiol. 23: 135-140

  • Nalepa C.A. 1988b. Reproduction in the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae): mating, oviposition, and hatch. Ann. Entomol. Soc. Am. 81: 637-641

  • Nalepa C.A. 2011a. Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Biology of Termites: a Modern Synthesis (Bignell D.E., Roisin Y. and Lo N., Eds). Springer, London, pp 69-95

  • Nalepa C.A. 2011b. Body size and termite evolution. Evol. Biol. 38: 243-257 doi:10.1007/s11692-011-9121-z

  • Nylander J.A.A. 2004. MrModelTest v2. Program distributed by the author. Evolutionary Biology Center, University of Uppsala, Uppsala, Sweden

  • Ohkuma M., Noda S., Hongoh Y., Nalepa C.A. and Inoue T. 2009. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc. R. Soc. London, Ser. B 276: 239-245

    Google Scholar 

  • Pauchet Y., Freitak D., Heidel-Fischer H.M., Heckel D.G. and Vogel H. 2008. Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera. J. Biol. Chem. 284: 2214-2224. doi:10.1074/jbc.M806204200

    Google Scholar 

  • Pond S.L.K., Muse S.V. and Frost S.D.W. 2004. HYPHY: hypothesis testing using phylogenies. http://www.datamonkey.org/. University of California, San Diego

  • Poulsen M., Bot A.N.M., Nielsen M.G. and Boomsma J.J. 2002. Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav. Ecol. Sociobiol. 52: 151-157

    Google Scholar 

  • Pupko T., Pe I., Shamir R. and Graur D. 2000. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Biol. Evol. 17: 890-896

    Google Scholar 

  • Rambaut A. 2002. Sequence Alignment Editor. Department of Zoology, University of Oxford, Oxford. ( http://evolve.zoo.ox.ac.uk )

  • Roberts D.W. and Humber R.A. 1981. Entomogenous fungi. In: Biology of Conidial Fungi (Cole G.T. and Kendrick B., Eds), vol 2. Academic Press, New York, pp 201-236

  • Rose T.M., Schultz E.R., Henikoff J.G., Pietrokovski S., McCallum C.M. and Henikoff S. 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res. 26: 1628-1635

    Google Scholar 

  • Rosengaus R.B., Traniello J.F.A. and Bulmer M.S. 2011. Ecology, behavior and evolution of disease resistance in termites. In: Biology of Termites: A Modern Synthesis (Bignell D.E., Roisin Y. and Lo N., Eds). Springer, London, pp 165-192

  • Seelinger G. and Seelinger U. 1983. On the social organization, alarm and fighting in the primitive cockroach Cryptocercus punctulatus. Z. Tierpsychol. 61: 315-333

    Google Scholar 

  • Suzuki Y. and Gojobori T. 1999. A method for detecting selection at single amino acid sites. Mol. Biol. Evol. 16: 1315-1328

    Google Scholar 

  • Swofford D.L. 1998. PAUP*, phylogenetic analysis using parsimony (* and other methods). 4 edn. Sinauer Associates, Sunderland, Massachusetts

  • Thompson G.J., Kitade O., Lo N. and Crozier R.H. 2000. Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J. Evol. Biol. 13: 869-881

    Google Scholar 

  • Viaud M., Pasquier A. and Brygoo Y. 2000. Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol. Res. 104: 1027-1032

    Google Scholar 

  • Wang C. and St Leger R.J. 2006. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc. Natl Acad. Sci. USA 103: 6647-6652

    Google Scholar 

  • Warr E., Das S., Dong Y. and Dimopoulos G. 2008. The Gram-Negative Bacteria-Binding Protein gene family: Its role in the innate immune system of Anopheles gambiae and in anti-Plasmodium defence. Insect Mol. Biol. 17: 39-51

    Google Scholar 

  • Wilson E.O. 1999. The Diversity of Life. WW Norton & Company, New York

  • Ye W., Lee C., Scheffrahn R., Aleong J., Su N., Bennett G. and Scharf M. 2004. Phylogenetic relationships of nearctic Reticulitermes species (Isoptera: Rhinotermitidae) with particular reference to Reticulitermes arenincola Goellner. Mol. Phylogenet. Evol. 30: 815-822

    Google Scholar 

  • Yuki M., Moriya S., Inoue T. and Kudo T. 2008. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zool. Sci. 25: 401-406

    Google Scholar 

Download references

Acknowledgments

We thank T. Russ for assistance in identifying and sequencing GNBP cDNA in P. americana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Bulmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulmer, M.S., Denier, D., Velenovsky, J. et al. A common antifungal defense strategy in Cryptocercus woodroaches and termites. Insect. Soc. 59, 469–478 (2012). https://doi.org/10.1007/s00040-012-0241-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-012-0241-y

Keywords

Navigation