Skip to main content
Log in

Colony pollen reserves affect body size, sperm production and sexual development in males of the stingless bee Melipona beecheii

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

The production of male sexual offspring by social insect colonies is often strongly seasonal or resource-dependent. In stingless bees, males are produced in smaller numbers under conditions of low colony food reserves; whether such males are negatively affected in traits related to reproductive success is not known. We compared body size, sperm production and sexual maturity in Melipona beecheii males reared with experimentally supplemented or reduced pollen reserves, but with otherwise equal numbers of workers and equal quantities of honey reserves. We also studied the same traits in males collected from non-manipulated colonies with pollen reserves intermediate between the supplemented or reduced groups but with more workers and honey reserves. Males reared under experimentally reduced pollen reserves had significantly smaller bodies and lower sperm counts compared to those reared in colonies with experimentally supplemented pollen reserves. There was also a significantly positive relationship between the number of sperm and body size in males across all colony treatments. The maximum number of sperm in seminal vesicles was recorded 2 days later in males from colonies with reduced pollen compared to males from colonies with supplementary pollen. Males from non-manipulated colonies were intermediate in size, sperm count and speed of maturation. Our study documents for the first time the existence of large size variation in males of stingless bees that is related with the amount of pollen reserves in their natal colony. We conclude that a colony’s pollen reserves have a major impact on male body size, sperm production and speed of sexual maturity in this stingless bee, which may be the case in other social insects. Stingless bees are a good model system to study the balance between colony-level selection and individual-level selection on male sexually selected traits such as body size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baer B. 2003. Bumblebees as model organisms to study male sexual selection in social insects. Behav. Ecol. Sociobiol. 54: 521-533.

    Google Scholar 

  • Berg S. 1991. Investigation on the rates of large and small drones at a drone congregation area. Apidologie 22: 437-438.

    Google Scholar 

  • Berg S., Koeniger N., Koeniger G. and Fuchs S. 1997. Body size and reproductive success of drones (Apis mellifera L.). Apidologie 28: 449-460.

    Google Scholar 

  • Bosch J. and Vicens N. 2006. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60: 26-33.

    Google Scholar 

  • Boomsma J.J., Baer B. and Heinze J. 2005. The evolution of male traits in social insects. Ann. Rev. Entomol. 50: 395-420.

    Google Scholar 

  • Bullock S.H. 1999. Relationships among body size, wing size and mass in bees from a tropical dry forest in Mexico. J. Kansas Entomol. Soc. 72: 426-439.

    Google Scholar 

  • Camposeco S., May Itza W. and Quezada-Euán J.J.G. 2005. Conducta de apareamiento de machos de Melipona beecheii (Apidae: Meliponini), bajo condiciones controladas en Yucatán, Mexico. Memorias Seminario y Taller Mesoamericano sobre abejas sin aguijón. San Ignacio, Chalatenango, El Salvador.

  • Cepeda Aponte O. I. 1997. Mating of Melipona favosa: behavioral description and some regulating factors (Apidae: Meliponinae). Proc Exper. Appl. Entomol. N.E.V. Amsterdam 8: 75-78.

    Google Scholar 

  • Conrad T., Paxton R.J., Barth F.G., Francke W. and Ayasse M. 2010. Female choice in the red mason bee, Osmia rufa (L.) (Megachilidae). J. Exp. Biol. 213: 4065-4073.

    Google Scholar 

  • Cortopassi-Laurino M. 2007. Drone congregations in Meliponini: what do they tell us? Biosci. J. Uberlandia 23: 153-160.

    Google Scholar 

  • Couvillon M.J. and Dornhaus A. 2010. Small worker bumble bees (Bombus impatiens) are hardier against starvation than their larger sisters. Insect. Soc. 57: 193-197.

    Google Scholar 

  • Cruz-Landim C. and Dallacqua R. 2002. Testicular reabsorption in adult males of Melipona bicolor bicolor Lepeletier (Hymenoptera, Apidae, Meliponini). Cytologia 67: 145-151.

  • De Bruijn L.L.M. and Sommeijer M.J. 2006. How the production patterns of sexuals may contribute to genetic variation in Melipona favosa. Proc. Neth. Entomol. Soc. Meet. 17: 79-85.

  • Duay P.R., De Jong D. and Engels W. 2003. Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development. Genet. Molec. Res. 1: 227-232.

    Google Scholar 

  • Engels W. and Imperatriz-Fonseca V.L. 1990. Caste development, reproductive strategies, and control of fertility in honey bees and stingless bees. In: Social Insects: an Evolutionary Approach to Castes and Reproduction (Engels W., Ed). Springer Verlag, Berlin. pp 167-230.

  • Free J. and Williams I. 1975. Factors determining the rearing and rejection of drones by the honeybee colony. Anim. Behav. 23: 650-675.

    Google Scholar 

  • Génissel A., Aupinel P., Bressac C., Tasei J. and Chevrier C. 2002. Influence of pollen origin on performance of Bombus terrestris microcolonies. Entomol. Exp. Appl. 104: 329-336.

  • Goulson D., Peat J., Stout J., Tucker J., Darvill B., Derwent L.C. and Hughes W.O.H. 2002. Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency? Anim. Behav. 64: 123-130.

    Google Scholar 

  • Koeniger G., Koeniger N., Tinger S. and Phiancharoen M. 2005. Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones. Apidologie 36: 279-284.

  • Kraus F.B., Weinhold S. and Moritz R.F.A. 2008.Genetic structure of drone congregations of the stingless bee Scaptotrigona mexicana. Insect. Soc. 55: 22-27.

    Google Scholar 

  • Moo-Valle H., Quezada-Euán J.J.G. and Wenseleers T. 2001. The effect food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae: Meliponini). Insect. Soc. 48: 398-403.

    Google Scholar 

  • Moo-Valle H., Quezada-Euán J.J.G., Canto-Martín J. and Gonzalez-Acereto J. 2004. Caste ontogeny and the distribution of reproductive cells on the combs of Melipona beecheii (Apidae: Meliponini). Apidologie 35: 587-594.

    Google Scholar 

  • Nguyen V. 1999.Effect of protein nutrition and pollen supplementation of honey bee (Apis mellifera L.) colonies on characteristics of drones with particular reference to sexual maturity. The Australasian Beekeeper, Mar, 101: 374-375.

    Google Scholar 

  • Paxton R.J. 2000. Genetic structure of colonies and a male aggregation in the stingless bee Scaptotrigona postica, as revealed by microsatellite analysis. Insect. Soc. 47: 63-69.

    Google Scholar 

  • Paxton R.J. 2005. Male mating behaviour and mating systems of bees: an overview. Apidologie 36: 145-156.

    Google Scholar 

  • Paxton R.J., Weißschuh N., Engels W., Hartfelder K. and Quezada-Euán J.J.G. 1999. Not only single mating in stingless bees. Naturwissenchaften 86: 143-146.

    Google Scholar 

  • Pereira-Lima A., Lino-Neto J. and Oliveira C.L. 2006. Sexual maturation in Melipona mondury males (Apidae: Meliponini). Braz. J. Morphol. Sci. 23: 369-375.

    Google Scholar 

  • Peters J.M., Queller D.C., Imperatriz-Fonseca V.L., Roubik D.W.and Strassmann J.E. 1999. Mate number, kin selection and social conflicts in stingless bees and honeybees. Proc. R. Soc. Lond B 266: 379-384.

  • Quezada-Euán J.J.G., López-Velasco A., Pérez-Balam J., Moo-Valle H., Velazquez-Madrazo A. and Paxton R.J. 2011. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect. Soc. 58: 31-38.

    Google Scholar 

  • Radmacher S. and Strohm E. 2010. Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidologie 41: 169-177.

    Google Scholar 

  • Roubik D.W. 1990. Mate location and mate competition in males of stingless bees (Hymenotera: Apidae: Meliponinae). Entomol. Gener. 15: 115-120.

    Google Scholar 

  • Roulston T.H. and Cane J.H. 2000.The effect of diet breadth and nesting ecology on body size variation in bees (Apoidea). J. Kansas Entomol. Soc. 73: 129-142.

    Google Scholar 

  • Roulston T.H. and Cane J.H. 2002.The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol. Ecol. 16: 619-622.

    Google Scholar 

  • Sakagami S.F. 1982. Stingless bees. In: Social Insects III (H.R. Hermann, Ed), Academic Press, New York, pp 361-423.

  • SAS Institute Inc. 2008.SAS/STAT ® 9.2 User’s Guide. Cary, NC.

  • Schlüns H., Schlüns E., van Praagh J. and Moritz R.F.A. 2003.Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie 34: 577-584.

    Google Scholar 

  • Hoover S.E.R., Higo H.A. and Winston M.L. 2006. Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J. Comp. Physiol. B 176: 55-63.

    Google Scholar 

  • Sommeijer M.J. and de Bruijn L.L.M. 1995. Drone congregations apart from the nest in Melipona favosa. Insect. Soc. 42: 123-127.

  • Stieper B.C., Kupershtok M., Driscoll M.V. and Shingleton A.W. 2008. Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev. Biol. 321: 18-26.

  • Strassmann J.E. 2001.The rarity of multiple mating by females in the social Hymenoptera. Insect. Soc. 48: 1-13.

    Google Scholar 

  • Somers K.M. 1986. Multivariate allometry and removal of size with principal component analysis. Syst. Zool. 35: 359-368.

    Google Scholar 

  • Van Veen J.W., Sommeijer M.J. and Meeuwsen F. 1997. Behaviour of drones in Melipona (Apidae, Meliponinae). Insect. Soc. 44: 435-447.

    Google Scholar 

  • van Veen J.W., Sommeijer M.J. and Arce H. 1999. The role of colony development and resource availability in the regulation of queen production in Melipona beecheii (Apidae, Meliponini). In: Colony reproduction in stingless bees (van Veen J.W., Ed). Utrecht University, Litografia Imprenta Lil S.A., San José, pp 80-87.

  • Velthuis H.H.W., Cortopassi-Laurino M., Pereboom Z. and Imperatriz-Fonseca V.L. 2003. Speciation, development, and the conservative egg of the stingless bee genus Melipona. Proc. Exper. Appl. Entomol. N.E.V. Amsterdam 14: 53-57.

    Google Scholar 

  • Velthuis H.H.W., Koedam D. and Imperatriz-Fonseca V.L. 2005. The males of Melipona and other stingless bees and their mothers. Apidologie 36: 169-185.

    Google Scholar 

  • Villanueva-Gutiérrez R. 1999. Pollen sources of European and Africanized honey bees in the eastern Yucatán Peninsula, Mexico. J. Apic. Res. 38: 105-111.

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for many helpful comments on the manuscript. For financial support, we acknowledge projects “Behavioural and genetic structure of drone congregation areas in stingless bees (Hymenoptera: Meliponini) from Yucatán, México” (IFS B/3454-1) and CONACYT project 103341 “Conservation of the stingless bees from México” and the CONACYT-EU project of FONCICYT (MUTUAL, 94293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. G. Quezada-Euán.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pech-May, F.G., Medina-Medina, L., de J. May-Itzá, W. et al. Colony pollen reserves affect body size, sperm production and sexual development in males of the stingless bee Melipona beecheii . Insect. Soc. 59, 417–424 (2012). https://doi.org/10.1007/s00040-012-0236-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-012-0236-8

Keywords

Navigation