Skip to main content
Log in

DNA methylation in the termite Coptotermes lacteus

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Social insects are key examples of organisms that display polyphenism. Their genomes encode instructions for the development of multiple phenotypes, known as castes, which typically have highly divergent morphology, physiology and behaviour. DNA methylation, an epigenetic mechanism associated with modulation of gene expression in various eukaryotes, has recently been shown to provide a key link between environmental cues and caste-specific gene expression in honey bees (Hymenoptera). In termites—a major social insect group phylogenetically distant from Hymenoptera—the existence of DNA methylation has not, to our knowledge, been reported to date. Since genes encoding key DNA methylation enzymes are known to be absent in the genomes of a number of insect species, we sought to test whether termites are able to methylate their DNA, and, if so, whether caste-specific patterns of DNA methylation exist. We performed methylation-specific amplified fragment length polymorphism on the termite Coptotermes lacteus, and found evidence for DNA methylation. However, a comparison of methylation levels in different castes did not reveal any significant differences in methylation levels. The demonstration of DNA methylation in termites sets the stage for future epigenetic studies in these important social insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bensch S., Åkesson S. and Irwin D.E. 2002. The use of AFLP to find an informative SNP: genetic differences across a migratory divide in willow warblers. Mol. Ecol. 11: 2359-2366

    Google Scholar 

  • Bird A.P. and Taggart M.H. 1980. Variable patterns of total DNA and rDNA methylation in animals. Nucleic Acids Res. 8: 1485-1497

    Google Scholar 

  • Feng S., Cokus S.J., Zhang X., Chen P.-Y., Bostick M., Goll M.G., Hetzel J., Jain J., Strauss S.H., Halpern M.E., Ukomadu C., Sadler K.C., Pradhan S., Pellegrini M. and Jacobsen S.E. 2010. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107: 8689-8694

    Google Scholar 

  • Field L.M., Lyko F., Mandrioli M. and Prantera G. 2004. DNA methylation in insects. Insect Mol. Biol. 13: 109-115

    Google Scholar 

  • Glastad K.M., Hunt B.G., Yi S.V. and Goodisman M.A.D. 2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20: 553-565

    Google Scholar 

  • Hunt B.G., Brisson J.A., Yi S.V. and Goodisman M.A.D. 2010. Functional conservation of DNA methylation in the pea aphid and the honeybee. Genome Biol. Evol. 2: 719-728

    Google Scholar 

  • Jaenisch R. and Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33: 245-254

    Google Scholar 

  • Korb J., Weil T., Hoffmann K., Foster K.R. and Rehli M. 2009. A gene necessary for reproductive suppression in termites. Science 324: 758

    Google Scholar 

  • Krauss V., Eisenhardt C. and Unger T. 2009. The genome of the stick insect Medauroidea extradentata is strongly methylated within genes and repetitive DNA. PLoS ONE 4: e7223

  • Kronforst M.R., Gilley D.C., Strassmann J.E. and Queller D.C. 2008. DNA methylation is widespread across social Hymenoptera. Curr. Biol. 18: R287-R288

    Google Scholar 

  • Kucharski R., Maleszka J., Foret S. and Maleszka R. 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319: 1827-1830

    Google Scholar 

  • Lyko F., Foret S., Kucharski R., Wolf S., Falckenhayn C. and Maleszka R. 2010. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8: e1000506

    Google Scholar 

  • Matsuura K., Himuro C., Yokoi T., Yamamoto Y., Vargo E.L. and Keller L. 2010. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl Acad. Sci. USA 107: 12963-12968

    Google Scholar 

  • Miura T. 2005. Developmental regulation of caste-specific characters in social-insect polyphenism. Evol. Dev. 7: 122-129

    Google Scholar 

  • Miura T., Kamikouchi A., Sawata M., Takeuchi H., Natori S., Kubo T. and Matsumoto T. 1999. Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica Isoptera: Termopsidae. Proc. Natl Acad. Sci. U S A 96: 13874-13879

    Google Scholar 

  • Roisin Y. and Lenz M. 1999. Caste developmental pathways in colonies of Coptotermes lacteus Froggatt headed by primary reproductives Isoptera, Rhinotermitidae. Insect. Soc. 46: 273-280

    Google Scholar 

  • Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414

    Google Scholar 

  • Walsh T.K., Brisson J.A., Robertson H.M., Gordon K., Jaubert-Possamai S., Tagu D. and Edwards O.R. 2010. A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum. Insect Mol. Biol. 19: 215-228

    Google Scholar 

  • West-Eberhard M.J. 2003. Developmental plasticity and evolution. Oxford University Press, Oxford.

  • Wheeler D.E. 1986. Developmental and physiological determinants of caste in social Hymenoptera - evolutionary implications. Am. Nat. 128: 13-34

    Google Scholar 

  • Wilson E.O. 1971. The Insect Societies. Belknap Press, Cambridge, MA.

  • Wurm Y., Wang J., Riba-Grognuz O., Corona M., Nygaard S., Hunt B.G., Ingram K.K., Falquet L., Nipitwattanaphon M., Gotzek D., Dijkstra M.B., Oettler J., Comtesse F., Shih C.-J., Wu W.-J., Yang C.-C., Thomas J., Beaudoing E., Pradervand S., Flegel V., Cook E.D., Fabbretti R., Stockinger H., Long L., Farmerie W.G., Oakey J., Boomsma J.J., Pamilo P., Yi S.V., Heinze J., Goodisman M.A.D., Farinelli L., Harshman K., Hulo N., Cerutti L., Xenarios I., Shoemaker D. and Keller L. 2011. The genome of the fire ant Solenopsis invicta. Proc. Natl Acad. Sci. USA 108: 5679-5684

    Google Scholar 

  • Xiong L.Z., Xu C.G., Saghai Maroof M.A. and Zhang Q. 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol. Gen. Genet. 261: 439-446

    Google Scholar 

  • Xu M., Li X. and Korban S. 2000. AFLP-based detection of DNA methylation. Plant Mol. Biol. Rep. 18: 361-368

    Google Scholar 

  • Zemach A., McDaniel I.E., Silva P. and Zilberman D. 2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328: 916-919

  • Zhou X., Oi F.M. and Scharf M.E. 2006. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl Acad. Sci. USA 103: 4499-4504

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Australian Research Council (DP1097265). We thank Theo Evans, Aaron Bartlett, Patrick Gleeson, and Andrew King for help with termite collection, and Julie Lim for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, N., Li, B. & Ujvari, B. DNA methylation in the termite Coptotermes lacteus . Insect. Soc. 59, 257–261 (2012). https://doi.org/10.1007/s00040-011-0213-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0213-7

Keywords

Navigation