Skip to main content

A review on self-destructive defense behaviors in social insects

Abstract

Colony defense is a necessary but dangerous task for social insects, and nest defensive behaviors often lead to a premature death of the actor. As an extreme form of colony defense, self-sacrificial behaviors have evolved by kin selection in various social insects. Most self-sacrificial defensive mechanisms occur in response to an acute threat to the colony, but some behaviors are preemptive actions that avert harm to the colony. Self-sacrifice has also been observed as a form of preemptive defense against parasites and pathogens where individuals will abandon their normal colony function and die in self-exile to reduce the risk of infecting nestmates. Here, we provide an overview of the self-destructive defense mechanisms that eusocial insects have evolved and discuss avenues for future research into this form of altruism.

This is a preview of subscription content, access via your institution.

References

  • Arechavaleta-Velasco M.E., Hunt G.J. and Emore C. 2003. Quantitative trait loci that influence the expression of guarding and stinging behaviors of individual honey bees. Behav. Genet. 33: 357–364

    Google Scholar 

  • Batchelor T.P. and Briffa M. 2011. Fight tactics in wood ants: individuals in smaller groups fight harder but die faster. P. Roy. Soc. Lond. B. Biol. 278: 3243–3250

    Google Scholar 

  • Benton R. 2011. Decision making: singin’ in the brain. Neuron. 69: 399–401

    Google Scholar 

  • Beshers S.N. and Fewell J.H. 2001. Models of division of labor in social insects. Annu. Rev. Entomol. 46: 413–440

    Google Scholar 

  • Bordereau C., Robert A., VanTuyen V. and Peppuy A. 1997. Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insect. Soc. 44: 289–297

    Google Scholar 

  • Bourke A.F.G. 2008. Social evolution: daily self-sacrifice by worker ants. Curr. Biol. 18: R1100-R1101

  • Breed M.D., Guzman-Novoa E. and Hunt G.J. 2004. Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49: 271–298

    Google Scholar 

  • Buchwald R. and Breed M.D. 2005. Nestmate recognition cues in a stingless bee, Trigona fulviventris. Anim. Behav. 70: 1331–1337

    Google Scholar 

  • Buschinger A. and Maschwitz U. 1984. Defensive behavior and defensive mechanisms in ants. In: Defensive Mechanisms in Social Insects (Hermann H.R., Ed), Praeger, New York, pp 95–150

  • Cook S.C. 2008. Functional and nutritional biology of exudate-feeding ants. PhD Thesis, University of Utah Press, UT, USA

  • Costa-Leonardo A.M. 2004. A new interpretation of the defense glands of neotropical Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Sociobiology 44: 391–402

  • Costa-Leonardo A.M. and Kitayama K. 1991. Frontal gland dehiscence in the Brazilian termite Serritermes serrifer (Isoptera: Serritermitidae). Sociobiology 19: 333–338

    Google Scholar 

  • Cremer S. and Sixt M. 2009. Analogies in the evolution of individual and social immunity. Philos. T. Roy. Soc. B. 364: 129–142

    Google Scholar 

  • Cunard S.J. and Breed M.D. 1998. Post-stinging behavior of worker honey bees (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 91: 754–757

    Google Scholar 

  • Davidson D.W., Anderson N.F., Cook S.C., Bernau C.R., Jones T.H., Kamariah A.S., Lim L.B., Chan C.M. and Clark D.A. 2009. An experimental study of microbial nest associates of Borneo’s exploding ants (Camponotus [Colobopsis] species). J. Hymenopt. Res. 18: 341–360

    Google Scholar 

  • Davidson D.W., Kamariah A.S. and Billen J. 2011. Histology of structures used in territorial combat by Borneo’s ‘exploding ants’. Acta Zool.-Stockholm 00: 1–5

    Google Scholar 

  • Davidson D.W., Lessard J.P., Bernau C.R. and Cook S.C. 2007. The tropical ant mosaic in a primary Bornean rain forest. Biotropica 39: 468–475

    Google Scholar 

  • Deligne J. and De Coninck E. 2006. Suicidal defence through a dehiscent frontal weapon in Apilitermes longiceps soldiers (Isoptera: Termitidae). Belg. J. Entomol. 8: 3–10

    Google Scholar 

  • Edwards J.S. 1966. Defense by smear: supercooling in the cornicle wax of aphids. Nature 211: 73–74

    Google Scholar 

  • Ellis R.E., Yuan J.Y. and Horvitz H.R. 1991. Mechanisms and functions of cell-death. Annu. Rev. Cell Biol. 7: 663–698

    Google Scholar 

  • Fewell J.H. 2003. Social insect networks. Science 301: 1867–1870

    Google Scholar 

  • Foster K.R., Wenseleers T. and Ratnieks F.L.W. 2006. Kin selection is the key to altruism. Trends Ecol. Evol. 21: 57–60

    Google Scholar 

  • Foster W.A. 2010. Behavioural ecology: the menopausal aphid glue-bomb. Curr. Biol. 20: R559-R560

  • Fraser C., Riley S., Anderson R.M. and Ferguson N.M. 2004. Factors that make an infectious disease outbreak controllable. P. Natl. Acad. Sci. U.S.A. 101: 6146–6151

    Google Scholar 

  • Greene A., Breisch N.L., Golden D.B.K., Kwiterovich K.A., Addison B.I. and Schuberth K.C. 1989. The sting that stays: autotomy in 2 common yellowjacket species. J. Allergy Clin. Immun. 83: 229–229

    Google Scholar 

  • Hamilton W.D. 1964. Genetical evolution of social behaviour. J. Theor. Biol. 7: 1–16

    Google Scholar 

  • Hart A.G. and Ratnieks F.L.W. 2002. Waste management in the leaf-cutting ant Atta colombica. Behav. Ecol. 13: 224–231

    Google Scholar 

  • Heinze J. and Walter B. 2010. Moribund ants leave their nests to die in social isolation. Curr. Biol. 20: 249–252

    Google Scholar 

  • Hermann H.R. 1971. Sting autotomy—defensive mechanism in certain social Hymenoptera. Insect. Soc. 18(2): 111–120

    Google Scholar 

  • Hermann H.R. 1984a. Defensive mechanisms: general considerations. In: Defensive Mechanisms in Social Insects (Hermann H.R., Ed), Praeger, New York, pp 1–31

  • Hermann H.R. 1984b. Elaboration and reduction of the venom apparatus in aculeate Hymenoptera. In: Defensive Mechanisms in Social Insects (Hermann H.R., Ed), Praeger, New York, pp 201–238

  • Herrmann M., Trenzcek T., Fahrenhorst H. and Engels W. 2005. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones. Genet. Molec. Res. 4: 624–641

    Google Scholar 

  • Higes M., Martin-Hernandez R., Botias C., Bailon E.G., Gonzalez-Porto A.V., Barrios L., del Nozal M.J., Bernal J.L., Jimenez J.J., Palencia P.G. and Meana A. 2008. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10: 2659–2669

    Google Scholar 

  • Hohorst W. and Graefe G. 1961. Ameisen - obligatorische Zwischenwirte des Lanzettegels (Dicrocoelium dendriticum). Naturwissenschaften 48: 229–230

    Google Scholar 

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press: Cambridge, Massachusetts, USA

  • Hughes D.P., Pierce N.E. and Boomsma J.J. 2008. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23: 672–677

    Google Scholar 

  • Human K.G. and Gordon D.M. 1999. Behavioral interactions of the invasive Argentine ant with native ant species. Insect. Soc. 46: 159–163

    Google Scholar 

  • Hunt G.J. 2007. Flight and fight: A comparative view of the neurophysiology and genetics of honey bee defensive behavior. J. Insect Physiol. 53: 399–410

    Google Scholar 

  • Hunt G.J., Guzman-Novoa E., Fondrk M.K. and Page R.E. 1998. Quantitative trait loci for honey bee stinging behavior and body size. Genetics 148: 1203–1213

    Google Scholar 

  • Hydak M.H. 1951. How long does a bee live after losing its sting. Gleanings Bee Cult. 79: 85–86

    Google Scholar 

  • Jeanne R.L. 1986. The evolution of the organization of work in social insects. Ital. J. Zool. 20: 119–133

    Google Scholar 

  • Jones T.H., Clark D.A., Edwards A.A., Davidson D.W., Spande T.F. and Snelling R.R. 2004. The chemistry of exploding ants, Camponotus spp. (cylindricus complex). J. Chem. Ecol. 30: 1479–1492

  • Khoury D.S., Myerscough M.R. and Barron A.B. 2011. A quantitative model of honey bee colony population dynamics. PLoS One 6: e18491

    Google Scholar 

  • Kohatsu S., Koganezawa M. and Yamamoto D. 2011. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69: 498–508

    Google Scholar 

  • Kolmes S.A. and Fergusson-Kolmes L.A. 1989. Stinging behavior and residual value of worker honey bees (Apis-mellifera). J. N.Y. Entomol. Soc. 97: 218–231

    Google Scholar 

  • Kralj J. and Fuchs S. 2006. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37: 577–587

    Google Scholar 

  • Kralj J. and Fuchs S. 2010. Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers. Apidologie 41: 21–28

    Google Scholar 

  • Kurosu U., Aoki S. and Fukatsu T. 2003. Self-sacrificing gall repair by aphid nymphs. P. Roy. Soc. Lond. B. Biol. 270: S12-S14

    Google Scholar 

  • Kurzfeld-Zexer L., Wool D. and Inbar M. 2010. Modification of tree architecture by a gall-forming aphid. Trees-Struct. Funct. 24: 13–18

    Google Scholar 

  • Kutsukake M., Shibao H., Uematsu K. and Fukatsu T. 2009. Scab formation and wound healing of plant tissue by soldier aphid. P. Roy. Soc. Lond. B. Biol. 276: 1555–1563

    Google Scholar 

  • Libersat F., Delago A. and Gal R. 2009. Manipulation of host behavior by parasitic insects and insect parasites. Annu. Rev. Entomol. 54: 189–207

    Google Scholar 

  • Manzoli-Palma M.D., daCunha M.S. and Gobbi N. 1997. Muscles-bearing of sting apparatus in social wasps and their relationship with the autotomy (Hymenoptera: Vespidae: Polistinae). J. Adv. Zool. 18: 1–6

    Google Scholar 

  • Maschwitz U. and Maschwitz E. 1974. Platzende Arbeiterinnen: Eine neue Art der Feindabwehr bei sozialen Hautflüglern. Oecologia 14: 289–294

    Google Scholar 

  • McAllister M.K. and Roitberg B.D. 1987. Adaptive suicidal-behavior in pea aphids. Nature 328: 797–799

    Google Scholar 

  • Millor J., Pham-Delegue M., Deneubourg J.L. and Camazine S. 1999. Self-organized defensive behavior in honeybees. P. Natl. Acad. Sci. U.S.A. 96: 12611–12615

    Google Scholar 

  • Moron D., Witek M. and Woyciechowski M. 2008. Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim. Behav. 75: 345–350

    Google Scholar 

  • Moura F.M.S., Vasconcellos A., Silva N.B. and Bandeira A.G. 2011. Caste development systems of the neotropical termite Constrictotermes cyphergaster (Isoptera, Termitidae). Insect. Soc. 58: 169–175

    Google Scholar 

  • Mulfinger L., Yunginger J., Styer W., Guralnick M. and Lintner T. 1992. Sting morphology and frequency of sting autotomy among medically important vespids (Hymenoptera, Vespidae) and the honey bee (Hymenoptera, Apidae). J. Med. Entomol. 29: 325–328

    Google Scholar 

  • Muller C.B. and Schmid-Hempel P. 1993. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363: 65–67

    Google Scholar 

  • Naug D. and Camazine S. 2002. The role of colony organization on pathogen transmission in social insects. J. Theor. Biol. 215: 427–439

    Google Scholar 

  • Nogueira-Neto P. 1964. The spread of a fierce African bee in Brazil. Bee World 45: 119–121

    Google Scholar 

  • O’Gorman R., Wilson D.S. and Miller R.R. 2005. Altruistic punishing and helping differ in sensitivity to relatedness, friendship, and future interactions. Evol. Hum. Behav. 26: 375–387

    Google Scholar 

  • Oster G.F. and Wilson E.O. 1978. Caste and Ecology in the Social Insects. Princeton University Press, Princeton. NJ

  • Pike N. 2007. Specialised placement of morphs within the gall of the social aphid Pemphigus spyrothecae. BMC Evol. Biol. 7: 18

    Google Scholar 

  • Pike N. and Foster W. 2004. Fortress repair in the social aphid species Pemphigus spyrothecae. Anim. Behav. 67: 909–914

    Google Scholar 

  • Poulin R. 1992. Altered behavior in parasitized bumblebees - parasite manipulation or adaptive suicide. Anim. Behav. 44: 174–176

    Google Scholar 

  • Poulin R., Brodeur J. and Moore J. 1994. Parasite manipulation of host behaviour: should hosts always lose? Oikos 70: 479–484

    Google Scholar 

  • Quenette P.Y. 1990. Functions of vigilance behavior in mammals - a review. Acta Oecol. 11: 801–818

    Google Scholar 

  • Ratnieks F.L.W. and Wenseleers T. 2008. Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol. Evol. 23: 45–52

    Google Scholar 

  • Rueppell O., Bachelier C., Fondrk M.K. and Page R.E. 2007. Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp. Gerontol. 42: 1020–1032

    Google Scholar 

  • Rueppell O., Hayworth M.K. and Ross N.P. 2010. Altruistic self-removal of health-compromised honey bee workers from their hive. J. Evol. Biol. 23: 1538–1546

    Google Scholar 

  • Sands W.A. 1982. Agonistic behavior of African soldierless Apicotermitinae (Isoptera, Termitidae). Sociobiology 7: 61–72

    Google Scholar 

  • Santomauro G., Oldham N.J., Boland W. and Engels W. 2004. Cannibalism of diploid drone larvae in the honey bee (Apis mellifera) is released by odd pattern of cuticular substances. J. Apicult.Res. 43: 69–74

    Google Scholar 

  • Schmid-Hempel P. 1998. Parasites in Social Insects. Princeton University Press, Princeton, NJ

  • Schmidt J.O., Blum M.S. and Overal W.L. 1980. Comparative lethality of venoms from stinging Hymenoptera. Toxicon 18: 469–474

    Google Scholar 

  • Schumacher M.J. and Egen N.B. 1995. Significance of Africanized bees for public-health - a review. Arch. Intern. Med. 155: 2038–2043

    Google Scholar 

  • Shapiro A.M. 1976. Beau Geste? Am. Nat. 110: 900–902

    Google Scholar 

  • Sledge M.F., Dani F.R., Fortunato A., Maschwitz U., Clarke S.R., Francescato E., Hashim R., Morgan E.D., Jones G.R. and Turillazzi S. 1999. Venom induces alarm behaviour in the social wasp Polybioides raphigastra (Hymenoptera: Vespidae): an investigation of alarm behaviour, venom volatiles and sting autotomy. Physiol. Entomol. 24(3): 234–239

    Google Scholar 

  • Smith-Trail D.R. 1980. Behavioral interactions between parasites and hosts: host suicide and the evolution of complex life cycles. Am. Nat. 116: 77–91

    Google Scholar 

  • Sobotnik J., Bourguignon T., Hanus R., Weyda F. and Roisin Y. 2010a. Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biol. J. Linn. Soc. 99: 839–848

  • Sobotnik J., Sillam-Dusses D., Weyda F., Dejean A., Roisin Y., Hanus R. and Bourguignon T. 2010b. The frontal gland in workers of neotropical soldierless termites. Naturwissenschaften 97: 495–503

  • Thorne B.L. 1997. Evolution of eusociality in termites. Annu. Rev. Ecol. Syst. 28: 27–54

    Google Scholar 

  • Tofilski A. 2002. Influence of age polyethism on longevity of workers in social insects. Behav. Ecol. Sociobiol. 51: 234–237

    Google Scholar 

  • Tofilski A. 2006. Influence of caste polyethism on longevity social insect colonies. J. Theor. Biol. 238: 527–531

    Google Scholar 

  • Tofilski A. 2009. Shorter-lived workers start foraging earlier. Insect. Soc. 56: 359–366

    Google Scholar 

  • Tofilski A., Couvillon M.J., Evison S.E.F., Helanterä H., Robinson E.J.H. and Ratnieks F.L.W. 2008. Preemptive defensive self-sacrifice by ant workers. Am. Nat. 172: E239-E243

  • Uematsu K., Kutsukake M., Fukatsu T., Shimada M. and Shibao H. 2007. Altruistic defenders in a Japanese gall-forming aphid, Quadrartus yoshinomiyai (Homoptera: Aphididae: Hormaphidinae). Sociobiology 50: 711–724

    Google Scholar 

  • Uematsu K., Kutsukake M., Fukatsu T., Shimada M. and Shibao H. 2010. Altruistic colony defense by menopausal female insects. Curr. Biol. 20: 1182–1186

    Google Scholar 

  • van Zweden J.S., Gruter C., Jones S.M. and Ratnieks F.L.W. 2011. Hovering guards of the stingless bee Tetragonisca angustula increase colony defensive perimeter as shown by intra- and inter-specific comparisons. Behav. Ecol. Sociobiol. 65: 1277–1282

    Google Scholar 

  • vanEngelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y.P., Underwood R., Tarpy D.R. and Pettis J.S. 2009. Colony collapse disorder: a descriptive study. PLoS One 4: e6481

    Google Scholar 

  • von Philipsborn A.C., Liu T.X., Yu J.Y., Masser C., Bidaye S.S. and Dickson B.J. 2011. Neuronal control of Drosophila courtship song. Neuron 69: 509–522

    Google Scholar 

  • Williams M.W. and Williams C.S. 1965. Toxicity of ant venom further studies of venom from Pogonomyrmex barbatus. P. Soc. Exp. Biol. Med. 119: 344–346

    Google Scholar 

  • Wilson E.O. 1975. Sociobiology. Belknap Press, Cambridge, MA

  • Woyciechowski M. and Kozlowski J. 1998. Division of labor by division of risk according to worker life expectancy in the honey bee (Apis mellifera L.). Apidologie 29: 191–205

    Google Scholar 

  • Woyciechowski M. and Moron D. 2009. Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insect. Soc. 56: 193–201

    Google Scholar 

Download references

Acknowledgments

We would like to thank Matt Ginzel, Lauren Brierley, our editor, and two anonymous reviewers for helpful comments on the manuscript. O.R. was supported by a research grant from the North Carolina Biotechnology Center and the US National Institute of Food and Agriculture (AFRI grant #: #2010–65104-20533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Shorter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shorter, J.R., Rueppell, O. A review on self-destructive defense behaviors in social insects. Insect. Soc. 59, 1–10 (2012). https://doi.org/10.1007/s00040-011-0210-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0210-x

Keywords

  • Altruism
  • Autothysis
  • Defensive behavior
  • Host suicide
  • Sting autotomy