Skip to main content
Log in

Multiple mating and offspring quality in Lasius ants

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Genetic diversity benefits for social insect colonies headed by polyandrous queens have received intense attention, whereas sexual selection remains little explored. Yet mates of the same queen may engage in sperm competition over the siring of offspring, and this could confer benefits on queens if the most successful sire in each colony (the majority sire) produces gynes (daughter queens) of higher quality. These benefits could be increased if high-quality sires make queens increase the percentage of eggs that they fertilize (unfertilized eggs develop into sons in social hymenopterans), or if daughters of better genetic quality are over-represented in the gyne versus worker class. Such effects would lead to female-biased sex ratios in colonies with high-quality majority gynes. I tested these ideas in field colonies of Lasius niger black garden ants, using body mass of gynes as a fitness trait as it is known to correlate with future fecundity. Also, I established the paternity of gynes through microsatellite DNA offspring analyses. Majority sires did not always produce heavier gynes in L. niger, but whenever they did do so colonies produced more females, numerically and in terms of the energetic investment in female versus male production. Better quality sires may be able to induce queens to fertilize more eggs or so-called caste shunting may occur wherever the daughters of better males are preferentially shunted to into the gyne caste. My study supports that integrating sexual selection and social evolutionary studies may bring a deeper understanding of mating system evolution in social insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abell A.J., Cole B.J., Reyes-Garcia R. and Wiernasz D.C. 1999. Sexual selection on body size and shape in the western harvester ant, Pogonomyrmex occidentalis Cresson. Evolution 53: 535–545

  • Andersson M. 1994. Sexual Selection. Princeton Univ. Press, Princeton, NJ

  • Arnqvist G. and Nilsson T. 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60: 145–164

    Google Scholar 

  • Aron S., Passera L. and Keller L. 1994. Queen-worker conflict over sex ratio: A comparison of primary and secondary sex ratios in the Argentine ant, Iridomyrmex humilis. J. Evol. Biol. 7: 403–418

    Google Scholar 

  • Baer B. and Schmid-Hempel P. 1999. Experimental variation in polyandry affects parasite loads and fitness in a bumblebee. Nature 397: 151–154

    Google Scholar 

  • Baer B. and Boomsma J.J. 2004. Mating system evolution and male reproductive investment in fungus-growing ants. Behav. Ecol. 15: 426–432

    Google Scholar 

  • Baer B. and Schmid-Hempel P. 2005. Sperm influences female hibernation success, survival and fitness in the bumble-bee Bombus terrestris. Proc. R. Soc. Lond. B 272: 319–323

    Google Scholar 

  • Baer B., Armitage S.A.O. and Boomsma J.J. 2006. Sperm storage induces an immunity cost in ants. Nature 441: 872–875

    Google Scholar 

  • Bangham J., Chapman T. and Partridge L. 2002. Effects of body size, accessory gland and testis size on pre- and postcopulatory success in Drosophila melanogaster. Anim. Behav. 64: 915–921

    Google Scholar 

  • Bilde T., Foged A., Schilling N. and Arnqvist G. 2009. Postmating sexual selection favors males that sire offspring with low fitness. Science 324: 1705–1706

    Google Scholar 

  • Boomsma J.J. 1989. Sex investment ratios in ants: has female bias been systematically overestimated? Am. Nat. 133: 517–532

    Google Scholar 

  • Boomsma J.J. and Isaaks J.A. 1985. Energy investment and respiration in queens and males of Lasius niger (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 18: 19–27

    Google Scholar 

  • Boomsma J.J. and Ratnieks F.L.W. 1996. Paternity in eusocial Hymenoptera. Phil. Trans. R. Soc. Lond. B 351: 947–975

    Google Scholar 

  • Boomsma J.J. and Sundström L. 1998. Patterns of paternity in Formica ants. Behav. Ecol. Sociobiol. 42: 85–92

    Google Scholar 

  • Boomsma J.J. and van der Have T. 1998. Queen mating and paternity variation in the ant Lasius niger. Mol. Ecol. 7: 1709–1718

    Google Scholar 

  • Bourke A.F.G. and Franks N.R. 1995. Social Evolution in Ants. Princeton Univ. Press, Princeton, NJ

  • Chapman T.R., Little L.F., Kalb J.M. and Wolfner M.F. 1995. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373: 241–244

    Google Scholar 

  • Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. Routledge Academic, KY

  • Cole B.J. and Wiernasz D.C. 1999. The selective advantage of low relatedness. Science 285: 891–893

    Google Scholar 

  • Corley M. and Fjerdingstad E.J. 2010. Queen strategies in Lasius niger ants – is the environment important? Behav. Ecol. Sociobiol. 65: 889–897

    Google Scholar 

  • Crozier R.H. and Fjerdingstad E.J. 2001. Polyandry in eusocial Hymenoptera – disunity in diversity? Annal. Zool. Fenn. 38: 267–285

    Google Scholar 

  • Crozier R.H. and Pamilo P. 1996. Evolution of Social Insect ColoniesSex Allocation and Kin Selection. Oxford Univ Press, Oxford UK

  • Davidson D.W. 1982. Sexual selection in harvester ants (Hymenoptera: Formicidae: Pogonomyrmex). Behav. Ecol. Sociobiol. 10: 245–250

    Google Scholar 

  • DeHeer C.J. 2002. A comparison of the colony-founding potential of queens from single- and multiple-queen colonies of the fire ant Solenopsis invicta. Anim. Behav. 64: 655–661

    Google Scholar 

  • Den Boer S.P.A., Baer B. and Boomsma J.J. 2010. Sperm fluid mediates ejaculate competition in social insects. Science 327: 1506–1509

    Google Scholar 

  • Eberhard W.G. 1996. Female Control: Sexual Selection by Cryptic Female Choice. Princeton Univ. Press, Princeton, NJ

  • Faul F., Erdfelder E., Buchner A. and Lang A.-G. 2009. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Meth. 41: 1149–1160

    Google Scholar 

  • Faul F., Erdfelder E., Lang A.-G. and Buchner A. 2007. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior. Behav. Res. Meth. 39: 175–191

    Google Scholar 

  • Fisher R.A. 1932. Statistical Methods for Research Workers. Oliver and Boyd, London UK

  • Fjerdingstad E.J. 2004. Multiple-paternity and colony homeostasis in Lasius niger ants. Behav. Ecol. Sociobiol. 56: 50–58

    Google Scholar 

  • Fjerdingstad E.J. 2005. Control of body size of Lasius niger ant sexuals – worker interests, genes and environment. Mol. Ecol. 14: 3123–3132

    Google Scholar 

  • Fjerdingstad E.J. and Crozier R.H. 2006. The evolution of worker caste diversity in social insects. Am. Nat. 167: 390–400

    Google Scholar 

  • Fjerdingstad E.J., Boomsma J.J. and Thorén P. 1998. Multiple paternity in the leaf-cutter ant Atta colombica - a microsatellite DNA study. Heredity 80: 118–126

    Google Scholar 

  • Fjerdingstad E.J. and Keller L. 2004. Relationships between phenotype, mating behaviour, and fitness of queens in the ant Lasius niger. Evolution 58: 1056–1063

    Google Scholar 

  • Fjerdingstad E.J., Gertsch P.J. and Keller L. 2002. Why do some social insect queens mate with several males? – testing the sex ratio manipulation hypothesis in Lasius niger. Evolution 56: 553–562

    Google Scholar 

  • Fjerdingstad E.J., Gertsch P.J. and Keller L. 2003. The relationship between multiple mating by queens, within-colony genetic variability and fitness in the ant Lasius niger. J. Evol. Biol. 16: 844–853

    Google Scholar 

  • Goodisman M.A.D., Kovacs J.L. and Hoffman E.A. 2007. The significance of multiple mating in the social wasp Vespula maculifrons. Evolution 61: 2260–2267

    Google Scholar 

  • Green K. and Tregenza T. 2009. The influence of male ejaculates on female mate search behaviour, oviposition, and longevity. Anim. Behav. 77: 887-892

    Google Scholar 

  • Hosken D.J., Garner T.W.J., Tregenza T., Wedell N. and Ward P.I. 2003. Superior sperm competitors sire higher-quality young. Proc. R. Soc. Lond. B. 270: 1933–1938

    Google Scholar 

  • Hosken D.J., Taylor M.L., Hoyle K., Higgins S. and Wedell N. 2008. Attractive males have greater success in sperm competition. Curr. Biol. 18: R553–R554

  • Hughes W.O.H. and Boomsma J.J. 2004. Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58: 1251–1260

    Google Scholar 

  • Hughes W.O.H. and Boomsma J.J. 2008. Genetic royal cheats in leaf-cutting ant societies. Proc. Natl. Acad. Sci. USA 105: 5150–5153

    Google Scholar 

  • Hughes W.O.H., Sumner S., van Borm S. and Boomsma J.J. 2003. Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc. R. Soc. Lond. B 100: 9294–9297

    Google Scholar 

  • Jaffe R., Kronauer D.J.C., Kraus F.B., Boomsma J.J. and Moritz R.F.A. 2007. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3: 513–516

    Google Scholar 

  • Jennions M.D. and Petrie M. 2000. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75: 21–64

    Google Scholar 

  • Keller L. 2009. Adaptation and the genetics of social behaviour. Phil. Trans. R. Soc. Ser. B 364: 3209–3216

    Google Scholar 

  • Keller L., Sundström L. and Chapuisat M. 1997. Male reproductive success: paternity contribution to queens and workers in Formica ants. Behav. Ecol. Sociobiol. 41: 11–15

    Google Scholar 

  • Keller L. and Passera L. 1989. Size and fat content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae) Oecologia 80: 236–240

    Google Scholar 

  • Lachaud J.-P., Cadena A., Schatz B., Perez-Lachaud G. and Ibarra-Nuñez G. 1999. Queen dimorphism and reproductive capacity in the ponerine ant, Ectatomma ruidum Roger. Oecologia 120: 515–523

    Google Scholar 

  • Mattila H.R. and Seeley T.D. 2007. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317: 362–364

    Google Scholar 

  • Meunier J., West S.A. and Chapuisat M. 2008. Split sex ratios in the social Hymenoptera: a meta-analysis. Behav. Ecol. 19: 382–390

    Google Scholar 

  • Nonacs P. 2000. Measuring and using skew in the study of social behavior and evolution. Am. Nat. 156: 577–589

    Google Scholar 

  • Nonacs P. 2003. Skew Calculator. http://www.eeb.ucla.edu/Faculty/Nonacs/shareware.htm, University of California at Los Angeles, CA

  • Ratnieks F.L.W. and Boomsma J.J. 1995. Facultative sex allocation by workers and the evolution of polyandry by queens in social Hymenoptera. Am. Nat. 145: 969–993

    Google Scholar 

  • Rheindt F.E., Strehl C.P. and Gadau J. 2003. A genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insect. Soc. 53: 163–168

    Google Scholar 

  • Ross K.G. and Matthews R.W. 1991. The Social Biology of Wasps. Cornell Univ. Press, Ithaca, NY

  • Schmid-Hempel P. 1998. Parasites in Social Insects. Princeton Univ. Press, Princeton, NJ

  • Seeley T.D. and Tarpy D.R. 2007. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. Lond. B 274: 67–72

    Google Scholar 

  • Simmons L.W. 2005. The evolution of polyandry: sperm competition, sperm selection, and offspring viability. Annu. Rev. Ecol. Evol. Syst. 36: 125–146

    Google Scholar 

  • Sundström L. 1994. Sex ratio bias, relatedness asymmetry and queen mating frequency in ant. Nature 367: 266–268

    Google Scholar 

  • Sundström L. 1995. Dispersal polymorphism and physiological conditions of male and females in the ant Formica truncorum. Behav. Ecol. 6: 132–139

    Google Scholar 

  • Sundström L., Chapuisat M. and Keller L. 1996. Conditional manipulation of sex ratios by ant workers: A test of kin selection theory. Science 274: 993–995

    Google Scholar 

  • Sundström L. and Ratnieks F.L.W. 1998. Sex ratio conflicts, mating frequency, and queen fitness in the ant Formica truncorum. Behav. Ecol. 9: 116–121

    Google Scholar 

  • Taylor M.L., Wedell N. and Hosken D.J. 2009. Attractive males do not sire superior daughters. Evol. Ecol. 24: 195–205

    Google Scholar 

  • Thornhill R. and Alcock J. 1983. The Evolution of Insect Mating Systems. Harvard Univ. Press, Cambridge, MA

  • Tregenza T. and Wedell N. 2000. Genetic compatibility, mate choice and patterns of parentage: Invited review. Mol. Ecol. 9: 1013–1027

    Google Scholar 

  • Trontii K., Thurin N., Sundström L. and Aron S. 2007. Mating for convenience or genetic diversity? Mating patterns in the polygynous ant Plagiolepis pygmaea. Behav. Ecol. 18: 298–303

    Google Scholar 

  • Verhoeven K.J.F., Simonsen K.L. and McIntyre L.M. 2005. Implementing false discovery rate control: increasing your power. Oikos 108: 643–647

    Google Scholar 

  • Wiernasz D.C. and Cole B.J. 2004. Queen size mediates queen survival and colony fitness in harvester ants. Evolution 57: 2179–2183

    Google Scholar 

Download references

Acknowledgments

The author thanks L. Keller, J. Clobert, and M. van Baalen for her stays in their groups and departments, C. Rogers for technical assistance, D. Laloi for discussion, and M.A.D. Goodisman, G.J. Thompson, S. Foitzik, O. Rüppell, and two anonymous reviewers for constructive comments on an earlier version of this paper. This work was funded by personal postdoctoral grants from the Carlsberg Foundation (Denmark) and by grants to L. Keller from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Fjerdingstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fjerdingstad, E.J. Multiple mating and offspring quality in Lasius ants. Insect. Soc. 59, 183–191 (2012). https://doi.org/10.1007/s00040-011-0203-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0203-9

Keywords

Navigation