Skip to main content
Log in

Colony genetic structure in the Australian jumper ant Myrmecia pilosula

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Eusocial insects vary significantly in colony queen number and mating frequency, resulting in a wide range of social structures. Detailed studies of colony genetic structure are essential to elucidate how various factors affect the relatedness and the sociogenetic organization of colonies. In this study, we investigated the colony structure of the Australian jumper ant Myrmecia pilosula using polymorphic microsatellite markers. Nestmate queens within polygynous colonies, and queens and their mates, were generally unrelated. The number of queens per colony ranged from 1 to 4. Queens were estimated to mate with 1–9 inferred and 1.0–11.4 effective mates. This is the first time that the rare co-occurrence of polygyny and high polyandry has been found in the M. pilosula species group. Significant maternity and paternity skews were detected at the population level. We also found an isolation-by-distance pattern, and together with the occurrence of polygynous polydomy, this suggests the occurrence of dependent colony foundation in M. pilosula; however, independent colony foundation may co-occur since queens of this species have fully developed wings and can fly. There is no support for the predicted negative association between polygyny and polyandry in ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbot P., Abe J., Alcock J. et al. 2011. Inclusive fitness theory and eusociality. Nature 471: E1-E4

  • Bekkevold D., Frydenberg J. and Boomsma J.J. 1999. Multiple mating and facultative polygyny in the Panamanian leafcutter ant Acromyrmex echinatior. Behav. Ecol. Sociobiol. 46: 103-109

    Google Scholar 

  • Bolton B., Alpert G., Ward P.S. and Naskrecki P. 2007. Bolton’s Catalogue of Ants of the World 1758-2005. Harvard University Press, Cambridge (MA, USA)

  • Boomsma J.J. and Ratnieks F.L.W. 1996. Paternity in eusocial Hymenoptera. Phil. Trans. R. Soc. Lond. B 351: 947-975

    Google Scholar 

  • Brady S.G., Schultz T.R., Fisher B.L. and Ward P.S. 2006. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc. Natl. Acad. Sci. USA 103: 18172-18177

    Google Scholar 

  • Chapuisat M. 1998. Mating frequency of ant queens with alternative dispersal strategies, as revealed by microsatellite analysis of sperm. Mol. Ecol. 7: 1097-1105

    Google Scholar 

  • Craig R. and Crozier R.H. 1979. Relatedness in the polygynous ant Myrmecia pilosula. Evolution 33: 335-341

    Google Scholar 

  • Crosland M.W.J., Crozier R.H. and Imai H.T. 1988. Evidence for several sibling biological species centred on Myrmecia pilosula (F. Smith) (Hymenoptera: Formicidae). J. Aust. Entomol. Soc. 27: 13-14

    Google Scholar 

  • Crozier R.H., Dobric N., Imai H.T., Graur D., Cornuet J.M. and Taylor R.W. 1995. Mitochondrial-DNA sequence evidence on the phylogeny of Australian jack-jumper ants of the Myrmecia pilosula complex. Mol. Phylogenet. Evol. 4: 20-30

    Google Scholar 

  • Crozier R.H. and Fjerdingstad E.J. 2001. Polyandry in social Hymenoptera - disunity in diversity? Ann. Zool. Fenn. 38: 267-285

    Google Scholar 

  • Dietemann V., Peeters C. and Hölldobler B. 2004. Gamergates in the Australian ant subfamily Myrmeciinae. Naturwissenschaften 91: 432-435

    Google Scholar 

  • Dumpert K. 1981. The Social Biology of Ants. Pitman Publishing Limited, Bath (UK)

  • Fernández-Escudero I., Seppä P. and Pamilo P. 2001. Dependent colony founding in the ant Proformica longiseta. Insect. Soc. 48: 80-82

    Google Scholar 

  • Foitzik S. and Heinze J. 1998. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9: 367-375

    Google Scholar 

  • Foitzik S., Strätz M. and Heinze J. 2003. Ecology, life history and resource allocation in the ant, Leptothorax nylanderi. J. Evol. Biol. 16: 670-680

    Google Scholar 

  • Fournier D., Aron S. and Milinkovitch M.C. 2002. Investigation of the population genetic structure and mating system in the ant Pheidole pallidula. Mol. Ecol. 11: 1805-1814

    Google Scholar 

  • Giraud T., Blatrix R., Poteaux C., Solignac M. and Jaisson P. 2000. Population structure and mating biology of the polygynous ponerine ant Gnamptogenys striatula in Brazil. Mol. Ecol. 9: 1835-1841

  • Goudet J. 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485-486

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press, Cambridge (MA, USA)

  • Hamilton W.D. 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7: 1-52

    Google Scholar 

  • Hammond R.L., Bourke A.F.G. and Bruford M.W. 2001. Mating frequency and mating system of the polygynous ant, Leptothorax acervorum. Mol. Ecol. 10: 2719-2728

    Google Scholar 

  • Hasegawa E. and Crozier R.H. 2006. Phylogenetic relationships among species groups of the ant genus Myrmecia. Mol. Phylogenet. Evol. 38: 575-582

    Google Scholar 

  • Haskins C.P. and Haskins E.F. 1955. The pattern of colony foundation in the archaic ant Myrmecia regularis. Insect. Soc. 2: 115-126

    Google Scholar 

  • Haskins C.P. 1970. Researches in the biology and social behavior of primitive ants. In: Development and Evolution of Behavior (Aronson L.R., Tobach E., Lehrman D.S. and Rosenblatt J.S., Eds), W. H. Freeman and Company, San Francisco (CA, USA). pp 355-388

  • Heinze J. 2008. The demise of the standard ant (Hymenoptera: Formicidae). Myrmecol. News 11: 9-20

    Google Scholar 

  • Herbers J.M. 1986. Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav. Ecol. Sociobiol. 19: 115-122

    Google Scholar 

  • Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6: 65-70

    Google Scholar 

  • Hughes W.O.H., Oldroyd B.P., Beekman M. and Ratnieks F.L.W. 2008a. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320: 1213-1216

  • Hughes W.O.H., Ratnieks F.L.W. and Oldroyd B.P. 2008b. Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21: 1090-1095

  • Imai H.T., Taylor R.W. and Crozier R.H. 1994. Experimental bases for the minimum interaction theory. 1. Chromosome evolution in ants of the Myrmecia pilosula species complex (Hymenoptera, Formicidae, Myrmeciinae). Jpn. J. Genet. 69: 137-182

    Google Scholar 

  • Johnson R. 2010. Independent colony founding by ergatoid queens in the ant genus Pogonomyrmex: queen foraging provides an alternative to dependent colony founding. Insect. Soc. 57: 169-176

    Google Scholar 

  • Jones O.R. and Wang J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10: 551-555

    Google Scholar 

  • Keller L. 1991. Queen number, mode of colony founding, and queen reproductive success in ants (Hymenoptera Formicidae). Ethol. Ecol. Evol. 3: 307 – 316

    Google Scholar 

  • Keller L. and Reeve H.K. 1994. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48: 694-704

    Google Scholar 

  • Kellner K., Trindl A., Heinze J. and D’ettorre P. 2007. Polygyny and polyandry in small ant societies. Mol. Ecol. 16: 2363-2369

    Google Scholar 

  • Kronauer D.J.C., Schöning C., Pedersen J.S., Boomsma J.J. and Gadau J. 2004. Extreme queen-mating frequency and colony fission in African army ants. Mol. Ecol. 13: 2381-2388

    Google Scholar 

  • Kronauer D.J.C. and Boomsma J.J. 2007. Multiple queens means fewer mates. Curr. Biol. 17: R753-R755

    Google Scholar 

  • Kronauer D.J.C., Johnson R.A., Boomsma J.J. and Mueller U. 2007. The evolution of multiple mating in army ants. Evolution 61: 413-422

    Google Scholar 

  • Liautard C. and Keller L. 2001. Restricted effective queen dispersal at a microgeographic scale in polygynous populations of the ant Formica exsecta. Evolution 55: 2484-2492

    Google Scholar 

  • Liu K. and Muse S.V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129

    Google Scholar 

  • Lorite P. and Palomeque T. 2010. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecol. News 13: 89-102

    Google Scholar 

  • Moreau C.S., Bell C.D., Vila R., Archibald S.B. and Pierce N.E. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312: 101-104

    Google Scholar 

  • Moreau C.S. 2009. Inferring ant evolution in the age of molecular data (Hymenoptera: Formicidae). Myrmecol. News 12: 201-210

    Google Scholar 

  • Nielsen R., Tarpy D.R. and Reeve H.K. 2003. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 12: 3157-3164

    Google Scholar 

  • Nonacs P. 2000. Measuring and using skew in the study of social behavior and evolution. Am. Nat. 156: 577-589

    Google Scholar 

  • Ogata K. and Taylor R.W. 1991. Ants of the genus Myrmecia Fabricius: a preliminary review and key to the named species (Hymenoptera: Formicidae: Myrmeciinae). J. Nat. Hist. 25: 1623-1673

    Google Scholar 

  • Peakall R. and Smouse P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295

    Google Scholar 

  • Pearcy M., Hardy O. and Aron S. 2006. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96: 377-382

    Google Scholar 

  • Pedersen J.S. and Boomsma J.J. 1999a. Positive association of queen number and queen-mating frequency in Myrmica ants: a challenge to the genetic-variability hypotheses. Behav. Ecol. Sociobiol. 45: 185-193

  • Pedersen J.S. and Boomsma J.J. 1999b. Genetic analysis of colony structure in polydomous and polygynous ant populations. Biol. J. Linn. Soc. 66: 115-144

  • Peeters C. and Ito F. 2001. Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu. Rev. Entomol. 46: 601-630

    Google Scholar 

  • Peeters C. and Molet M. 2009. Colonial reproduction and life histories. In: Ant Ecology (Lach L., Parr C.L. and Abbott K.L., Eds), Oxford University Press, New York (NY, USA). pp 159-176

  • Pol R.G., de Casenave J.L., Feldhaar H., Milesi F.A. and Gadau J. 2008. Polyandry in two South American harvester ants. Insect. Soc. 55: 91-97

    Google Scholar 

  • Qian Z.-Q., Ceccarelli F.S., Carew M.E., Schlüns H., Schlick-Steiner B.C. and Steiner F.M. 2011a. Characterization of polymorphic microsatellites in the giant bulldog ant, Myrmecia brevinoda and the jumper ant, M. pilosula. J. Insect Sci. 11: 71

  • Qian Z.-Q., Schlüns H., Schlick-Steiner B.C., Steiner F.M., Robson S.K.A., Schlüns E.A. and Crozier R.H. 2011b. Intraspecific support for the polygyny-vs.-polyandry hypothesis in the bulldog ant Myrmecia brevinoda. Mol. Ecol. 20: 3681-3691

  • Queller D.C. and Goodnight K.F. 1989. Estimating relatedness using genetic markers. Evolution 43: 258-275

    Google Scholar 

  • Rheindt F.E., Gadau J., Strehl C.-P. and Hölldobler B. 2004. Extremely high mating frequency in the Florida harvester ant (Pogonomyrmex badius). Behav. Ecol. Sociobiol. 56: 472-481

    Google Scholar 

  • Sanetra M. and Crozier R.H. 2001. Polyandry and colony genetic structure in the primitive ant Nothomyrmecia macrops. J. Evol. Biol. 14: 368-378

    Google Scholar 

  • Sanetra M. 2011. Nestmate relatedness in the Australian ant Myrmecia pyriformis SMITH, 1858 (Hymenoptera: Formicidae). Myrmecol. News 15: 77-84

    Google Scholar 

  • Schlüns E.A., Wegener B., Schlüns H., Azuma N., Robson S.K.A. and Crozier R.H. 2009. Breeding system, colony and population structure in the weaver ant Oecophylla smaragdina. Mol. Ecol. 18: 156-167

    Google Scholar 

  • Schlüns H. and Crozier R.H. 2009. Molecular and chemical immune defenses in ants (Hymenoptera: Formicidae). Myrmecol. News 12: 237-249

    Google Scholar 

  • Seifert B. 2009. Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecol. News 12: 149-166

    Google Scholar 

  • Seppä P. and Walin L. 1996. Sociogenetic organization of the red ant Myrmica rubra. Behav. Ecol. Sociobiol. 38: 207-217

    Google Scholar 

  • Shimizu M., Kosaka N., Shimada T., Nagahata T., Iwasaki H., Nagai H., Shiba T. and Emi M. 2002. Universal fluorescent labeling (UFL) method for automated microsatellite analysis. DNA Res. 9: 173-178

    Google Scholar 

  • Smith F. 1858. Catalogue of Hymenopterous Insects in the Collection of the British Museum. Part VI. Formicidae. Taylor and Francis, London (UK)

  • Steiner F.M., Crozier R.H. and Schlick-Steiner B.C. 2009. Colony structure. In: Ant Ecology (Lach L., Parr C.L. and Abbott K.L., Eds), Oxford University Press, New York (NY, USA). pp 177-193

  • Sumner S., Hughes W.O.H., Pedersen J.S. and Boomsma J.J. 2004. Ant parasite queens revert to mating singly. Nature 428: 35-36

    Google Scholar 

  • Taylor R.W. 1978. Nothomyrmecia macrops: A living-fossil ant rediscovered. Science 201: 979-985

    Google Scholar 

  • Trontti K., Aron S. and Sundström L. 2005. Inbreeding and kinship in the ant Plagiolepis pygmaea. Mol. Ecol. 14: 2007-2015

    Google Scholar 

  • Trontti K., Thurin N., Sundström L. and Aron S. 2007. Mating for convenience or genetic diversity? Mating patterns in the polygynous ant Plagiolepis pygmaea. Behav. Ecol. 18: 298-303

    Google Scholar 

  • Villet M.H. 1991. Colony foundation in Plectroctena mandibularis F. Smith, and the evolution of ergatoid queens in Plectroctena (Hymenoptera: Formicidae). J. Nat. Hist. 25: 979 - 983

    Google Scholar 

  • Villet M.H. 1999. Reproductive behaviour of Plectroctena mandibularis F. Smith (Hymenoptera: Formicidae), a ponerine ant with ergatoid queens. Afr. Entomol. 7: 289-291

    Google Scholar 

  • Ward P.S. and Brady S.G. 2003. Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera: Formicidae). Invertebr. Syst. 17: 361-386

    Google Scholar 

  • Weir B.S. and Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.

    Google Scholar 

  • Wright S. 1943. Isolation by distance. Genetics 28: 114-138

    Google Scholar 

  • Zinck L., Jaisson P., Hora R.R., Denis D., Poteaux C. and Doums C. 2007. The role of breeding system on ant ecological dominance: genetic analysis of Ectatomma tuberculatum. Behav. Ecol. 18: 701-708

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants to RHC from the Australian Research Council (DP0665890, DP0450569) and by the Endeavour Postgraduate Award to Z-QQ from the Department of Education, Employment and Workplace Relations, Australia. EAS received scholarships from James Cook University and the Taxonomy Research and Information Network (TRIN), Australia. The authors thank Hai-Feng Zheng for map drawing, Ching Crozier for her assistance in the field survey and lab work, Robert W. Taylor for sample collection and identification, and two anonymous reviewers for their critical comments on an earlier version of the manuscript. Genotyping was performed by the Genetic Analysis Facility at James Cook University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-Q. Qian.

Additional information

B.C. Schlick-Steiner, F.M. Steiner, S.K.A. Robson, H. Schlüns and E.A. Schlüns contributed equally to the paper.

Prof. R. H. Crozier deceased on 12 November 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, ZQ., Schlick-Steiner, B.C., Steiner, F.M. et al. Colony genetic structure in the Australian jumper ant Myrmecia pilosula . Insect. Soc. 59, 109–117 (2012). https://doi.org/10.1007/s00040-011-0196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0196-4

Keywords

Navigation