Skip to main content
Log in

Use of termites, Reticulitermes virginicus, as a springboard in the invasive success of a predatory ant, Pachycondyla (=Brachyponera) chinensis

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Invasive ant species have general diet and nest requirements, which facilitate their establishment in novel habitats and their dominance over many native ants. The Asian needle ant, Pachycondyla chinensis, native throughout Australasia was introduced to the southeastern US where it has become established in woodland habitats, nests in close proximity to and consumes subterranean termites (Rhinotermitidae). P. chinensis do not occur in habitats lacking Rhinotermitidae. We suggest that subterranean termites are critical for P. chinensis success in new habitats. We demonstrate that P. chinensis is a general termite feeder, retrieving Reticulitermes virginicus five times more often than other potential prey near P. chinensis colonies. Odors produced by R. virginicus workers, as well as other potential prey, attract P. chinensis. Furthermore, P. chinensis occupy R. virginicus nests in the lab and field and display behaviors that facilitate capture of R. virginicus workers and soldiers. Termites are an abundant, high quality, renewable food supply, in many ways similar to the hemipteran honeydew exploited by most other invasive ant species. We conclude that the behavior of P. chinensis in the presence of termites increases their competitive abilities in natural areas where they have been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott K.L. and Green P.T. 2007. Collapse of an ant-scale mutualism in a rainforest on Christmas Island. Oikos 116: 1238–1246

    Google Scholar 

  • Agbogba C. 1992. Settlement in the prey termite nest by the ponerine ant Pachycondyla caffraria (Smith), and tandem running signal analysis for the following ant. J. Ethol. 10: 133–137

    Google Scholar 

  • Ambrose H., Ambrose K., Emlen D. and Bright K. 2002. A Handbook of Biological Investigation. Hunter Textbooks Inc. Winston-Salem, NC. 188 pp

  • Bayliss J. and Fielding A. 2002. Termitophagous foraging by Pachycondyla analis (Formicidae, Ponerinae) in a Tanzanian coastal dry forest. Sociobiology 39: 103–122

    Google Scholar 

  • Bhatkar A. and Whitcomb W.H. 1970. Artificial diet for rearing various species of ants. Fla. Entomol. 53: 229–232

    Google Scholar 

  • Blüthgen N., Gebauer G. and Fiedler K. 2003. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137: 426–435

    Google Scholar 

  • Bolton B. 1995. A taxonomic and zoogeographical census for the extant ant taxa (Hymentoptera, Formicidae). J. Nat. Hist. 29: 1037–1056

    Google Scholar 

  • Buckley R. and Gullan P. 1991. More aggressive ant species (Hymenoptera: Formicidae) provide better protection for soft scales and mealybugs (Homoptera: Coccidae, Pseudococcidae). Biotropica 23: 282–286

    Google Scholar 

  • Buczkowski G. and Bennett G. 2007. Protein marking reveals predation on termites by the woodland ant, Aphaenogaster rudis. Insect. Soc. 54: 219–224

    Google Scholar 

  • Buczkowski G. and Bennett G. 2008. Behavioral interactions between Aphaenogaster rudis (Hymenoptera: Formicidae) and Reticulitermes flavipes (Isoptera: Rhinotermitidae): the importance of physical barriers. J. Insect Behav. 21: 296–305

    Google Scholar 

  • Corbara B. and Dejean A. 2000. Adaptive behavioral flexibility of the ant Pachycondyla analis (= Megaponera foetens) (Formicidae: Ponerinae) during prey capture. Sociobiology 36: 465–483

    Google Scholar 

  • Davidson DW. 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn. Soc. 61: 153–181

    Google Scholar 

  • Dejean A., Durand J.L., and Bolton B. 1996. Ants inhabiting Cubitermes termitaries in African rain forests. Biotropica 28: 701–713

    Google Scholar 

  • Dejean A. and Fénéron R. 1999. Predatory behaviour in the ponerine ant, Centromyrmex bequaerti: a case of termitolesty. Behav. Process. 47: 125–133

    Google Scholar 

  • Dejean A., Kenne M., and Moreau C.S. 2007. Predatory abilities favour the success of the invasive ant Pheidole megacephala in an introduced area. J. Appl. Entomol. 131: 625–629

    Google Scholar 

  • Eggleton P., Bignell D.E., Sands W.A., Mawdsley N.A., Lawton, Wood T.G., and Bignell N.C. 1996. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Phil. Trans. R. Soc. Lond. B. 351: 51–68

  • García Pérez J.A., Blanco Pinon A., Mercado Hernández R. and Badii M. 1997. Predation of Pachycondyla harpax Fabr. (Hymenoptera: Ponerinae) on Gnathamitermes tubiformans Buckley (Isoptera: Termitidae) under conditions of captivity. Southwest. Entomol. 22: 345–353

  • Grover C.D., Kay A.D., Monson J.A., Marsh T.C., and Holway D.A. 2007. Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proc. R. Soc. B. 274: 2951–2957

    Google Scholar 

  • Guénard B. and Dunn R.R. 2010. A new (old), invasive ant in the hardwood forests of Eastern North America and its potentially widespread impacts. PLoS ONE 5: e11614. doi:10.1371/journal.pone.0011614

  • Hansen R.A., Williams R.S., Degenhardt D.C. and Lincoln D.E. 2001. Non-litter effects of elevated CO2 on forest floor microarthropod abundances. Plant Soil 236: 139–144

    Google Scholar 

  • Helms K.R. and Vinson S.B. 2002. Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. Ecology 83: 2425–2438

    Google Scholar 

  • Helms K.R. and Vinson S.B. 2008. Plant resources and colony growth in an invasive ant: The importance of honeydew-producing Hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 37: 487–493

    Google Scholar 

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press, Cambridge, Massachusetts, 732 pp

  • Holway D.A, Lach L., Suarez A.V., Tsutsui N.D. and Case T.J. 2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33: 181–233

    Google Scholar 

  • Horn S. and Hanula J.L. 2002. Life history and habitat associations of the broad wood cockroach, Parcoblatta lata (Blattaria: Blattellidae) and other native cockroaches in the coastal plain of South Carolina. Ann. Entomol. Soc. Am. 95: 665–671

    Google Scholar 

  • Howard R.W., Jones S.C., Mauldin J.K. and Beal R.H. 1982. Abundance, distribution, and colony size estimates for Reticulitermes spp (Isoptera, Rhinotermitidae) in Southern Mississippi. Environ. Entomol. 11: 1290–1293

    Google Scholar 

  • Jaffe K., Ramos C. and Issa S. 1995. Trophic interactions between ants and termites that share common nests. Ann. Entomol. Soc. Am. 88: 328–333

    Google Scholar 

  • Kenis M., Auger-Rozenberg M.A., Roques A., Timms L., Péré C., Cock M., Settele J., Augustin S. and López-Vaamonde C. 2009. Ecological effects of invasive alien insects. Biol. Invasions 11: 21–45

    Google Scholar 

  • Kubota M., Imai H.T., Kondo M., Onoyama K., Ogata K., Terayama M. and Yoshimura M. 2003. Japanese Ant Image Database. Japanese Ant Database Group (JADG).

  • Lach L. 2003. Invasive ants: unwanted partners in ant-plant interactions? Ann. Miss. Bot. Gard. 90: 91–108

    Google Scholar 

  • Lach L. 2005. Interference and exploitation competition of three nectar-thieving invasive ant species. Insect. Soc. 52: 257–262

    Google Scholar 

  • Leal I.R. and Oliveira P.S. 1995. Behavioral ecology of the neotropical termite hunting ant Pachycondyla (=Termitopone) marginata - colony founding, group-raiding and migratory patterns. Behav. Ecol. Sociobiol. 37: 373–383

    Google Scholar 

  • Martin P. and Bateson P. 1993. Measuring BehaviorAn Introductory Guide. Cambridge University Press. 222 pp

  • Matsuura K. 2002. Colony-level stabilization of soldier head width for head-plug defense in the termite Reticulitermes speratus (Isoptera : Rhinotermitidae). Behav. Ecol. Sociobiol. 51: 172–179

  • Matsuura K., Vargo E., Kawatsu K., Labadie P., Nakano H., Yashiro T. and Tsuji K. 2009. Queen succession through asexual reproduction in termites. Science 323: 1687–1687

    Google Scholar 

  • Mill A.E. 1984. Predation by the ponerine ant Pachycondyla commutata on termites of the genus Syntermes in Amazonian rain-forest. J. Nat. Hist. 18: 405–410

    Google Scholar 

  • Mittler T.E. 1958. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae) II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J. Exp. Biol. 35: 74–84

    Google Scholar 

  • Morales M.A. 2000. Mechanisms and density dependence of benefit in an ant-membracid mutualism. Ecology 81: 482–489

    Google Scholar 

  • Nelder M., Paysen E., Zungoli P. and Benson E. 2006. Emergence of the introduced ant Pachycondyla chinensis (Formicidae: Ponerinae) as a public health threat in the southeastern United States. J. Med. Entomol. 43: 1094–1098

    Google Scholar 

  • Palmer T.M. 2003. Spatial habitat heterogeneity influences competition and coexistence in an African acacia ant guild. Ecology 84: 2843–2855

    Google Scholar 

  • Paul J. and Roces F. 2003. Fluid intake rates in ants correlate with their feeding habits. J. Insect Physiol. 49: 347–357

    Google Scholar 

  • Prestwich G.D. 1984. Defense mechanisms of termites. Annu. Rev. Entomol. 29: 201–232

    Google Scholar 

  • Rojas M. and Morales-Ramos J. 2001. Bait matrix for delivery of chitin synthesis inhibitors to the formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 94: 506–510

    Google Scholar 

  • Rowles A.D. and Silverman J. 2009. Carbohydrate supply limits invasion of natural communities by Argentine ants. Oecologia 161: 161–171

    Google Scholar 

  • SAS Institute. 2007. JMP, Version 7. SAS Institute Inc., Cary, NC

  • Smith M.R. 1934. Ponerine ants of the genus Euponera in the United States. Ann. Entomol. Soc. Am. 27: 557–564

    Google Scholar 

  • Sogbesan A.O. and Ugwumba A.A.A. 2008. Nutritional values of some non-conventional animal protein feedstuffs used as fishmeal supplement in aquaculture practices in Nigeria. Turk. J. Fish. Aqua. Sci. 8: 159–164

    Google Scholar 

  • Su N.-Y., Ban P.M. and Scheffrahn R.H. 1993. Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in southeastern Florida. Environ. Entomol. 22 : 1113–1117

    Google Scholar 

  • Suzzoni J.P, Schatz B. and Dejean A. 2000. Essential and alternative prey in a ponerine ant: variations according to the colony life cycle. C.R. Acad. Sci. III 323: 1003–1008

    Google Scholar 

  • Szalanski A.L., Austin J.W. and Ovens C.B. 2003. Identification of Reticulitermes spp. (Isoptera: Reticulitermatidae) from south central United States by PCR-RFLP. J. Econ. Entomol. 96: 1514–1519

    Google Scholar 

  • Tillberg C.V., Holway D.A., LeBrun E.G. and Suarez A.V. 2007. Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proc. Natl. Acad. Sci. U.S.A. 104: 20856–20861

    Google Scholar 

  • Walsh P.S., Metzger D.A. and Higuchi R. 1991. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506–513

    Google Scholar 

  • Watt A.D., Stork N.E., Eggleton P., Srivastava D., Bolton B., Larsen T.B., Brendell M.J. and Bignell D.E. 1997. Impact of forest loss and regeneration on insect abundance and diversity. In: Forests and Insects (Watt A.D., Stork N.E. and Hunter M.D., Eds), Chapman & Hall, London, U.K. pp 273–286

  • Wheeler W.M. 1930. A list of the known Chinese ants. Peking Nat. Hist. Bull. 5: 53–81

    Google Scholar 

  • Wheeler W.M. 1936. Ecological relations of Ponerine and other ants to termites. Proc. Am. Acad. Arts Sci. 71: 159–242

    Google Scholar 

  • Wilson E.O. and Brown W.L. 1984. Behavior of the cryptobiotic predaceous ant Eurhopalothrix heliscata, n. sp. (Hymenoptera: Formicidae: Basicerotini). Insect. Soc. 31: 408–428

  • Wood T.G. and Sands W.A. 1978. The role of termites in ecosystems. In: Production Ecology of Ants and Termites (Brian M.V., Ed), Cambridge University Press, Cambridge, U.K. pp 245–292

  • Zungoli P., Paysen E., Benson E. and Nauman J. 2005. Colony and habitat characteristics of Pachycondyla chinensis (Hymenoptera: Formicidae). In: Proc. 5th Int. Conf. Urban Pests (Young-Lee C. and Robinson W.H., Eds), Perniagaan Ph’ng @ P&Y Design Network, Malaysia. p 571

Download references

Acknowledgments

We thank R. Dunn and E. Vargo for providing improvements to the manuscript. J. Brightwell, M. Green, B. Guénard, P. Labadie E. Spicer and D. Tarpy provided technical assistance and C. Arellano provided statistical advice. This study was supported by the Blanton J. Whitmire Endowment at North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Silverman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bednar, D.M., Silverman, J. Use of termites, Reticulitermes virginicus, as a springboard in the invasive success of a predatory ant, Pachycondyla (=Brachyponera) chinensis . Insect. Soc. 58, 459–467 (2011). https://doi.org/10.1007/s00040-011-0163-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0163-0

Keywords

Navigation