Advertisement

Insectes Sociaux

, Volume 57, Issue 4, pp 403–412 | Cite as

Social polymorphism in the Australian small carpenter bee, Ceratina (Neoceratina) australensis

  • S. M. Rehan
  • M. H. Richards
  • M. P. Schwarz
Research Article

Abstract

The bee tribe Ceratinini provides important insights into the early stages of sociality. Many arthropods exhibit behaviours precursory to social life, including adult longevity, parental care, nest loyalty and mutual tolerance, yet the origins of social behaviour are few. Here we describe the biology of a facultatively social bee, Ceratina (Neoceratina) australensis, which exhibits all of the preadaptations for successful group living, yet presents ecological and behavioural characteristics that seemingly disfavour frequent colony formation. This species is socially polymorphic with both solitary and social nests collected in sympatry. Social colonies consist of two foundresses, one contributing both foraging and reproductive effort and the second which remains at the nest as a passive guard. Cooperative nesting provides no overt reproductive benefits over solitary nesting in this population, although brood survival tends to be greater in social colonies. Maternal longevity, subsociality and bivoltine nesting phenology in this species favour colony formation, while dispersal habits and offspring longevity may inhibit more frequent social nesting in this and other ceratinines.

Keywords

Ceratinini Facultative social behaviour Reproductive differentiation Small carpenter bees Ceratina 

Notes

Acknowledgments

We wish to thank Sally Harradine for help in the field, Andrew Morse for the colony cycle drawing and the two anonymous reviewers for their helpful suggestions. This research was supported by an ARC grant to M.P.S., an NSERC grant to M.H.R. and Endeavour and NSERC scholarships to S.M.R.

References

  1. Batra S.W.T. 1966. The life cycle and behavior of the primitively social bee, Lasioglossum zephyrum. Univ. Kansas Sci. Bull. 46: 359-423Google Scholar
  2. Cartar R. 1992. Morphological senescence and longevity: an experiment relating wing wear and life span in foraging wild bumble bees. J. Anim. Ecol. 61: 225-231Google Scholar
  3. Chenoweth L.B., Tierney S.M., Smith J.A., Cooper S.J.B. and Schwarz M.P. 2007. Social complexity in bees is not sufficient to explain lack of reversions to solitary living over long time scales. BMC Evol. Biol. 7: 246Google Scholar
  4. Daly H.V. 1966. Biological studies on Ceratina dallatoreana, an alien bee in California which reproduces by parthenogenesis (Hymenoptera: Apoidea). Ann. Entomol. Soc. Am. 59: 1138-1154Google Scholar
  5. Daly H.V. 1988. Bees of the new genus Ctenoceratina in Africa south of the Sahara (Hymenoptera: Apoidea). University of California Press, Los Angeles. 69 ppGoogle Scholar
  6. Danforth B.N. 2002. Evolution of sociality in a primitively eusocial lineage of bees. Proc. Natl Acad. Sci. U.S.A. 99: 286-290Google Scholar
  7. Engel M.S. and Grimaldi D.A. 2005. Primitive new ants in Cretaceous amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae). Am. Mus. Novit. 3485: 1-23Google Scholar
  8. Hogendoorn K. and Velthuis H.H.W. 1993. The sociality of Xylocopa pubescens: does a helper really help? Behav. Ecol. Sociobiol. 32: 247-257Google Scholar
  9. Hogendoorn K. and Velthuis H.H.W. 1995. The role of young guards in Xylocopa pubescens. Insect. Soc. 42: 427-448Google Scholar
  10. Hogendoorn K. and Velthuis H.H.W. 1999. Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size. Insect. Soc. 46: 198-207Google Scholar
  11. Jeanson R., Kukuk P.F. and Fewell J.H. 2005. Emergence of division of labour in halictine bees: contributions of social interactions and behavioural variance. Anim. Behav. 70: 1183-1193Google Scholar
  12. Johnson M.D. 1988. The relationship of provision weight to adult weight and sex ratio in the solitary bee, Ceratina calcarata. Ecol. Entomol. 13: 165-170Google Scholar
  13. Katayama E. and Maeta Y. 1979. Brood development and adult activities of a small carpenter bee, Ceratina megastigmata (Hymenoptera: Anthophoridae). Kontyu 47: 139-157Google Scholar
  14. Kidokoro M., Kikuchi T. and Hirata M. 2003. Prehibernal insemination and short dispersal of Ceratina flavipes (Hymenoptera: Anthophidae) in northernmost Japan. Ecol. Res. 18: 99-102Google Scholar
  15. Kidokoro M., Noriko A. and Higashi S. 2006. Pre-hibernation mating by a solitary bee, Ceratina flavipes (Hymenoptera: Apidae: Xylocopinae). J. Nat. Hist. 40: 2101-2110Google Scholar
  16. Kislow C.J. 1976. The comparative biology of two species of small carpenter bees, Ceratina strenua F. Smith and C. calcarata Robertson. PhD dissertation, University of Georgia, Athens, Georgia. 221 ppGoogle Scholar
  17. Lin N. and Michener C.D. 1972. Evolution of sociality in insects. Q. Rev. Biol. 47: 131-159Google Scholar
  18. Malyshev S.I. 1913. Life instincts of some Ceratina-bees (Hymenoptera: Apidae), a comparative and experimental study. Hor. Soc. Entomol. Ros. 40: 1-58Google Scholar
  19. Maynard Smith J. and Szathamáry E. 1995. The Major Transitions in Evolution. Oxford University Press, New York. 346 ppGoogle Scholar
  20. McCorquodale D.B. 1989. Nest defense in single- and multifemale nests of Cerceris antipodes (Hymenoptera: Sphecidae). J. Insect Behav. 2: 267-276Google Scholar
  21. Michener C.D. 1962. The genus Ceratina in Australia with notes on its nests (Hymenoptera: Apoidea). J. Kans. Entomol. Soc. 35: 414-421Google Scholar
  22. Michener C.D. 1969. Comparative social behaviour of the bees. Annu. Rev. Entomol. 14: 299-342Google Scholar
  23. Michener C.D. 1974. The Social Behavior of the Bees. Harvard University Press, Cambridge. 404 ppGoogle Scholar
  24. Michener C.D. 1985. From solitary to eusocial: need there be a series of intervening species? Fort. Zool. 31: 293-305Google Scholar
  25. Michener C.D. 1990. Castes in xylocopine bees. In: Social Insects: An Evolutionary Approach to Castes and Reproduction (W. Engels, Ed), Springer Verlag, Berlin, New York. pp 123-146Google Scholar
  26. Michener C.D. 2007. The Bees of the World, 2nd ed. The John Hopkins University Press, Baltimore. 953 ppGoogle Scholar
  27. Packer L. 1986. The social organization of Halictus ligatus (Hymenoptera: Halictidae) in Southern Ontario. Can. J. Zool. 64: 2317-2324Google Scholar
  28. Rau P. 1928. The nesting habits of the little carpenter-bee, Ceratina calcarata. Ann. Entomol. Soc. Am. 21: 380-396Google Scholar
  29. Rehan S.M., Richards M.H. and Schwarz M.P. 2009. Evidence of social nesting in the Ceratina of Borneo. J. Kans. Entomol. Soc. 82: 194-209Google Scholar
  30. Rehan S.M. and Richards M.H. 2010. Nesting biology and subsociality of Ceratina calcarata (Hymenoptera: Apidae). Can. Entomol. 142: 65-74Google Scholar
  31. Sakagami S.F. and Maeta Y. 1977. Some presumably presocial habits of Japanese Ceratina bees, with notes on various social types in Hymenoptera. Insect. Soc. 24: 319-343Google Scholar
  32. Sakagami S.F. and Maeta Y. 1984. Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). J. Kans. Entomol. Soc. 57: 639-656Google Scholar
  33. Sakagami S.F. and Maeta Y. 1987. Multifemale nests and rudimentary castes of an ‘almost’solitary bee Ceratina flavipes, with additional observations on multifemale nests of Ceratina japonica (Hymenoptera, Apoidea). Kontyu 55: 391-409Google Scholar
  34. Sakagami S.F. and Maeta Y. 1989. Compatibility and incompatibility of solitary life with eusociality in two normally solitary bees Ceratina japonica and Ceratina okinawana (Hymenoptera, Apoidea), with notes on the incipient phase of eusociality. Jap. J. Entomol. 57: 417-739Google Scholar
  35. Sakagami S.F. and Maeta Y. 1995. Task allocation in artificially induced colonies of a basically solitary bee Ceratina (Ceratinidia) okinawana, with a comparison of sociality between Ceratina and Xylocopa (Hymenoptera, Anthophoridae, Xylocopinae). Jap. J. Ecol. 63: 115-150Google Scholar
  36. Schwarz M.P. and O’Keefe K.J. 1991. Order of eclosion and reproductive differentiation in a social allodapine bee. Ethol. Ecol. Evol. 3: 233-245Google Scholar
  37. Schwarz M.P., Richards M.H. and Danforth B.N. 2007. Changing paradigms in insect social evolution: insights from halictine and allodapine bees. Ann. Rev. Entomol. 52: 127-150Google Scholar
  38. Smith A.R., Wcislo W.T. and O’Donnell S. 2003. Assured fitness returns favour sociality in a mass-provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae) Behav. Ecol. Soc. 54: 14-21Google Scholar
  39. Smith A.R., Wcislo W.T. and O’Donnell S. 2007. Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 61: 1111-1120Google Scholar
  40. Sokal R. and Rohlf F. 1995. Biometry, 3rd ed. Freeman, New York. 887 ppGoogle Scholar
  41. Steen Z. 2000. Social behaviour in endemic Australian carpenter bees. PhD. dissertation, Flinders University, Adelaide, Australia. 211 ppGoogle Scholar
  42. Tallamy D.W. and Wood T.K. 1986. Convergence patterns in subsocial insects. Annu. Rev. Entomol. 31: 369-390Google Scholar
  43. Thorne B.L., Grimaldi D.A. and Krishna K. 2000. Early fossil history of the termites. In: Termites: Evolution, Sociality, Symbioses, Ecology (T. Abe, D.E. Bignell and Higashi S., Eds), Kluwer Academic Publishing, Dordrecht. pp 77-93Google Scholar
  44. Tierney S.M. and Schwarz M.P. 2009. Reproductive hierarchies in the African allodapine bee Allodapula dichroa (Apidae; Xylocopinae) and ancestral forms of sociality. Biol. J. Linn. Soc. 97: 520-530Google Scholar
  45. Wenzel J.W. 1990. A social wasp’s nest from the Cretaceous period, Utah, USA, and its biogeographical significance. Psyche 97: 21-29Google Scholar
  46. Wcislo W.T. 1997. Social interactions and behavioral context in a largely solitary bee, Lasioglossum (Dialictus) figueresi (Hymenoptera, Halictidae). Insect. Soc. 44: 199-208Google Scholar
  47. Wilson E.O. 1971. The Insect Societies. Harvard University Press, Cambridge. 562 ppGoogle Scholar
  48. Zammit J., Hogendoorn K. and Schwarz M.P. 2008. Strong constraints to independent nesting in a facultatively social bee: quantifying the effects of enemies-at-the-nest. Insect. Soc. 55: 74-78Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2010

Authors and Affiliations

  1. 1.Department of Biological SciencesBrock UniversitySt. CatharinesCanada
  2. 2.School of BiologyFlinders UniversityAdelaideAustralia

Personalised recommendations