Insectes Sociaux

, Volume 57, Issue 4, pp 393–402 | Cite as

High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes

  • E. Perdereau
  • A.-G. Bagnères
  • S. Dupont
  • F. Dedeine
Research Article

Abstract

The coexistence of multiple unrelated reproductives within social insect colonies decreases the relatedness among colony members and therefore challenges kin selection theory. This study investigated the colony genetic structure of a French introduced population of the American subterranean termite Reticulitermes flavipes by analyzing genotypes at eight microsatellite loci and at one mtDNA region. Results revealed that all colonies contained numerous related secondary reproductives, and that 31% of colonies possessed more than two unrelated reproductives. The presence of several unrelated reproductives within colonies of this species is commonly assumed to result from colony fusion. Although such a high occurrence of colony fusion is the highest ever observed in a termite population, it is probable that the available methodology underestimated the detection of colony fusion in French populations. Overall, these results suggest that French colonies might differ strongly from the great majority of American colonies in their capacity to produce secondary reproductives as well as in their ability to merge. The nature and evolutionary origin of these population differences are discussed.

Keywords

Termites Colony fusion Social organization Breeding system Biological invasion Reticulitermes 

References

  1. Adams E.S., Atkinson L. and Bulmer M.S. 2007. Relatedness, recognition errors, and colony fusion in the termite Nasutitermes corniger. Behav. Ecol. Sociobiol. 61: 1195-1201Google Scholar
  2. Atkinson L. and Adams E.S. 1997. The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc. R. Soc. Lond. B Biol. Sci. 264: 1131-1136Google Scholar
  3. Austin J.W., Szalanski A.L., Scheffrahn R.H., Messenger M.T., Dronnet S. and Bagnères A.G. 2005. Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann. Entomol. Soc. Am. 98: 395-401Google Scholar
  4. Bourke A.F.G. and Franks N.R. (Eds) (1995) Social Evolution in Ants, Princeton Univ. Press, Princeton. 550 ppGoogle Scholar
  5. Bulmer M.S., Adams E.S. and Traniello J.F.A. 2001. Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav. Ecol. Sociobiol. 49: 236-243Google Scholar
  6. Bulmer M.S. and Traniello J.F.A. 2002a. Foraging range expansion and colony genetic organization in the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Environ. Entomol. 31: 293-298Google Scholar
  7. Bulmer M.S. and Traniello J.F.A. 2002b. Lack of aggression and spatial association of colony members in Reticulitermes flavipes. J. Insect Behav. 15: 121-126Google Scholar
  8. Buttermore R.E. 1997. Observations of successful Bombus terrestris (L.) (Hymenoptera: Apidae) colonies in southern Tasmania. Aust. J. Entomol. 36: 251-254Google Scholar
  9. Chapman R.E. and Bourke A.F.G. 2001. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4: 650-662Google Scholar
  10. Clément J.-L. 1986. Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): geographic and seasonal variations. Sociobiology 11: 311-323Google Scholar
  11. Clément J.-L., Bagnères A.-G., Uva P., Wilfert L., Quintana A., Reinhard J. and Dronnet S. 2001. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insect. Soc. 48: 202-215Google Scholar
  12. DeHeer C.J. and Kamble S.T. 2008. Colony genetic organization, fusion and inbreeding in Reticulitermes flavipes from the Midwestern U.S. Sociobiology 51: 307-325Google Scholar
  13. DeHeer C.J. and Vargo E.L. 2004. Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol. Ecol. 13: 431-441Google Scholar
  14. DeHeer C.J. and Vargo E.L. 2006. An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav. Ecol. Sociobiol. 59: 753-761Google Scholar
  15. DeHeer C.J. and Vargo E.L. 2008. Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insect. Soc. 55: 190-199Google Scholar
  16. Donovan B.J., Howie A.M.E., Schroeder N.C., Wallace A.R. and Read P.E.C. 1992. Comparative characteristics of nests of Vespula germanica (F) and Vespula vulgaris (L) (Hymenoptera, Vespinae) from Christchurch-city, New-Zealand. N.Z. J. Zool. 19: 61-71Google Scholar
  17. Dronnet S., Bagnères A.-G., Juba T.R. and Vargo E.L. 2004. Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis Feytaud. Mol. Ecol. Notes 4: 127-129Google Scholar
  18. Dronnet S., Chapuisat M., Vargo E.L., Lohou C. and Bagnères A.G. 2005. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14: 1311-1320Google Scholar
  19. Fournier D., de Biseau J.C. and Aron S. 2009. Genetics, behaviour and chemical recognition of the invading ant Pheidole megacephala. Mol. Ecol. 18: 186-199Google Scholar
  20. Giraud T., Pedersen J.S. and Keller L. 2002. Evolution of supercolonies: The Argentine ants of southern Europe. Proc. Natl Acad. Sci. USA 99: 6075-6079Google Scholar
  21. Goodisman M.A.D. and Crozier R.H. 2002. Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56: 70-83Google Scholar
  22. Goudet J. 1995. FSTAT (vers 1.2): A computer program to calculate F-statistics. J. Hered. 86: 485-486Google Scholar
  23. Grace J.K., Abdallay A. and Farr K.R. 1989. Eastern subterranean termite (isoptera: Rhinotermitidae) foraging territories and populations in Toronto. Can. Entomol. 121: 551-556Google Scholar
  24. Hacker M., Kaib M., Bagine R.K.N., Epplen J.T. and Brandl R. 2005. Unrelated queens coexist in colonies of the termite Macrotermes michaelseni. Mol. Ecol. 14: 1527-1532Google Scholar
  25. Hall T.A. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclear Acids Symposium Series 41: 95-98Google Scholar
  26. Heinze J. and Foitzik S. (2009) The Evolution of queen numbers in ants: from one to many and back. In: Organization of Insect Societies, from Genome to Sociocomplexity (Gadau J. and Fewell J., Eds). University of Harvard Press, pp 26-50.Google Scholar
  27. Helanterä H., Strassmann J.E., Carrillo J. and Queller D.C. 2009. Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol. Evol. 24: 341-349.Google Scholar
  28. Hölldobler B. and Wilson E.O. 1990. The Ants. The Belknap Press of Harvard University Press, Cambridge, Massachusetts. 732 ppGoogle Scholar
  29. Holway D.A., Lach L., Suarez A.V., Tsutsui N.D. and Case T.J. 2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33: 181-233Google Scholar
  30. Holzer B., Chapuisat M., Kremer N., Finet C. and Keller L. 2006. Unicoloniality, recognition and genetic differentiation in a native Formica ant. J. Evol. Biol. 19: 2031-2039Google Scholar
  31. Jenkins T.M., Dean R.E., Verkerk R. and Forschler B.T. 2001. Phylogenetic analyses of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy, and introduction dynamics. Mol. Phylogenet. Evol. 20: 286-293Google Scholar
  32. Johns P.M., Howard K.J., Breisch N.L., Rivera A. and Thorne B.L. 2009. Nonrelatives inherit colony resources in a primitive termite. Proc. Natl Acad. Sci. USA 106: 17452-17456Google Scholar
  33. Kasper M.L., Reeson A.F. and Austin A.D. 2008. Colony characteristics of Vespula germanica (F.) (Hymenoptera, Vespidae) in a Mediterranean climate (southern Australia). Aust. J. Entomol. 47: 265-274Google Scholar
  34. Keller L. 1993. The assessment of reproductive success of queens in ants and other social insects. Oikos 67: 177-180Google Scholar
  35. Korb J. 2008. Termites, hemimetabolous diploid white ants? Front. Zool. 5: 15Google Scholar
  36. Le Breton J., Delabie J.H.C., Chazeau J., Dejean A. and Jourdan H. 2004. Experimental evidence of large-scale unicoloniality in the tramp ant Wasmannia auropunctata (Roger). J. Insect Behav. 17: 263-271Google Scholar
  37. Legendre F., Whiting M.F., Bordereau C., Cancello E.M., Evans T.A. and Grandcolas P. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol. 48: 615-627Google Scholar
  38. Leniaud L. 2008. Potentialités ontogéniques, différenciation des castes et conséquences sur la structure génétique des termites du genre Reticulitermes. University of Tours (François Rabelais), Tours, pp 193Google Scholar
  39. Leniaud L., Pichon A., Uva P. and Bagnères A.G. 2009. Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species Bull. Entomol. Res. 99: pp 1-10Google Scholar
  40. Leniaud L., Dedeine F., Pichon A., Dupont S. and Bagnères A.-G. 2010. Geographical distribution, genetic diversity and social organization of a new European termite, Reticulitermes urbis (Isoptera: Rhinotermitidae) Biol. Invasions 12: 1389-1402Google Scholar
  41. Lenz M. and Barrett R.A. 1982. Neotenic formation in field colonies of Coptotermes lacteus (Froggatt) in Australia, with comments on the roles of neotenics in the genus Coptotermes (Isoptera: Rhinotermitidae). Sociobiology 7: 47-59Google Scholar
  42. Matsuura K. 2001. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92: 20-26Google Scholar
  43. Miura T., Roisin Y. and Matsumoto T. 2000. Molecular phylogeny and biogeography of the nasute termite genus Nasutitermes (Isoptera : Termitidae) in the Pacific tropics. Mol. Phylogenet. Evol. 17: 1-10Google Scholar
  44. Morel L., Vander Meer R.K. and Lofgren C.S. 1990. Comparison of nestmate recognition between monogyne and polygyne populations of Solenopsis invicta (Hymenoptera, Formicidae). Ann. Entomol. Soc. Am. 83: 642-647Google Scholar
  45. Myles T.G. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33: 1-43Google Scholar
  46. Nagamitsu T. and Yamagishi H. 2009. Nest density, genetic structure, and triploid workers in exotic Bombus terrestris populations colonized Japan. Apidologie 40: 429-440Google Scholar
  47. Nei M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New-York. 512 ppGoogle Scholar
  48. Nobre T., Nunes L. and Bignell D.E. 2008. Colony interactions in Reticulitermes grassei population assessed by molecular genetic methods. Insect. Soc. 55: 66-73Google Scholar
  49. Orivel J., Grangier J., Foucaud J., Le Breton J., Andrès F.X., Jourdan H., Delabie J.H.C., Fournier D., Cerdan P., Facon B., Estoup A. and Dejean A. 2009. Ecologically heterogeneous populations of the invasive ant Wasmannia auropunctata within its native and introduced ranges. Ecol. Entomol. 34: 504-512Google Scholar
  50. Parman V. and Vargo E.L. 2008. Population density, species abundance, and breeding structure of subterranean termite colonies in and around infested houses in central North Carolina. J. Econ. Entomol. 101: 1349-1359Google Scholar
  51. Pedersen J.S., Krieger M.J.B., Vogel V., Giraud T. and Keller L. 2006. Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60: 782-791Google Scholar
  52. Pichon A., Kutnik M., Leniaud L., Darrouzet E., Chaline N., Dupont S. and Bagnères A.G. 2007. Development of experimentally orphaned termite worker colonies of two Reticulitermes species (Isoptera : Rhinotermitidae). Sociobiology 50: 1015-1034Google Scholar
  53. Queller D.C. and Goodnight K.F. 1989. Estimating relatedness using genetic markers. Evolution 43: 258-275Google Scholar
  54. Raymond M. and Rousset F. 1995. An exact test for population differentiation. Evolution 49: 1280-1283Google Scholar
  55. Sambrook J., Fritcsh E.F. and Maniatis T. 1989. Molecular Cloning. 2nd Ed. Cold Spring Harbor Lab Press, Cold Spring Harbor, NY. 253 ppGoogle Scholar
  56. Shelton T.G. and Grace J.K. 1996. Review of agonistic behaviors in the Isoptera. Sociobiology 28: 155-176Google Scholar
  57. Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann. Entomol. Soc. Am. 87: 651-701Google Scholar
  58. Su N.Y., Ye W.M., Ripa R., Scheffrahn R.H. and Giblin-Davis R.M. 2006. Identification of Chilean Reticulitermes (Isoptera:Rhinotermitidae) inferred from three mitochondrial gene DNA sequences and soldier morphology. Ann. Entomol. Soc. Am. 99: 352-363Google Scholar
  59. Thompson J.D., Higgins D.G. and Gibson T.J. 1994b. Clustal-w - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific, gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680Google Scholar
  60. Thorne B.L., Traniello J.F.A., Adams E.S. and Bulmer M. 1999. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological and genetic studies. Ethol. Ecol. Evol. 11: 149-169Google Scholar
  61. Tsutsui N.D. and Suarez A.V. 2003. The colony structure and population biology of invasive ants. Conserv. Biol. 17: 48-58Google Scholar
  62. Tsutsui N.D., Suarez A.V., Holway D.A. and Case T.J. 2000. Reduced genetic variation in the success of an invasive species. Proc. Natl Acad. Sci. USA 97: 5948-5953.Google Scholar
  63. Vanloon A.J., Boomsma J.J. and Andrasfalvy A. 1990. A new polygynous Lasius species (Hymenoptera, Formicidae) from Central-Europe. 1. Description and general biology. Insect. Soc. 37: 348-362Google Scholar
  64. Vargo E.L. 2000. Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol. Ecol. 9: 817-829Google Scholar
  65. Vargo E.L. 2003a. Genetic structure of Reticulitermes flavipes and R. virginicus (Isoptera : Rhinotermitidae) colonies in an urban habitat and tracking of colonies following treatment with hexaflumuron bait. Environ. Entomol. 32: 1271-1282Google Scholar
  66. Vargo E.L. 2003b. Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 57: 2805-2818Google Scholar
  67. Vargo E.L. and Carlson J.R. 2006. Comparative study of breeding systems of sympatric subterranean termites (Reticulitermes flavipes and R. hageni) in Central North Carolina using two classes of molecular genetic markers. Environ. Entomol. 35: 173-187Google Scholar
  68. Vargo E.L. and Husseneder C. 2009. Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54: 379-403Google Scholar
  69. Vargo E.L., Juba T.R. and DeHeer C.J. 2006. Relative abundance and comparative breeding structure of subterranean termite colonies (Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes virginicus, and Coptotermes formosanus) in a South Carolina lowcountry site as revealed by molecular markers. Ann. Entomol. Soc. Am. 99: 1101-1109Google Scholar
  70. Vogel V., Pedersen J.S., d’Ettorre P., Lehmann L. and Keller L. 2009. Dynamics and genetic structure of Argentine ant supercolonies in their native range. Evolution 63: 1627-1639Google Scholar
  71. Weir B.S. and Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370Google Scholar
  72. Wilson E.O. and Hölldobler B. 2005. Eusociality: Origin and consequences. Proc. Natl Acad. Sci. USA 102: 16119-16119Google Scholar
  73. Ye W., Lee C.-Y., Scheffrahn R.H., Aleong J.M., Su N.-Y., Bennett G.W. and Scharf M.E. 2004. Phylogenetic relationships of nearctic Reticulitermes species (Isoptera: Rhinotermitidae) with particular reference to Reticulitermes arenincola Goellner. Mol. Phylogenet. Evol. 30: 815-822Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2010

Authors and Affiliations

  • E. Perdereau
    • 1
  • A.-G. Bagnères
    • 1
  • S. Dupont
    • 1
  • F. Dedeine
    • 1
  1. 1.Institut de Recherche sur la Biologie de l’Insecte, UMR-CNRS 6035, Faculté des SciencesUniversité de ToursToursFrance

Personalised recommendations