Skip to main content
Log in

Quasiregular Values and Rickman’s Picard Theorem

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove a far-reaching generalization of Rickman’s Picard theorem for a surprisingly large class of mappings, based on the recently developed theory of quasiregular values. Our results are new even in the planar case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ahlfors, L.: Zur Theorie der überlagerungsflächen. Acta Math. 65(1), 157–194 (1935)

    Article  MathSciNet  Google Scholar 

  2. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York (1973)

    Google Scholar 

  3. Ambrosio, L., Dal Maso, G.: A general chain rule for distributional derivatives. Proc. Am. Math. Soc. 108(3), 691–702 (1990)

    Article  MathSciNet  Google Scholar 

  4. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    Google Scholar 

  5. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. (2) 163(1), 265–299 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bonk, M., Poggi-Corradini, P.: The Rickman-Picard theorem. Ann. Acad. Sci. Fenn., Math. 44, 615–633 (2019)

    Article  MathSciNet  Google Scholar 

  7. Borel, E.: Sur les zéros des fonctions entières. Acta Math. 20(1), 357–396 (1897)

    Article  MathSciNet  Google Scholar 

  8. Davis, B.: Picard’s theorem and Brownian motion. Trans. Am. Math. Soc. 213, 353–362 (1975)

    MathSciNet  Google Scholar 

  9. Doležalová, A., Kangasniemi, I., Onninen, J.: Mappings of generalized finite distortion and continuity. J. Lond. Math. Soc. 109(1) (2024)

  10. Drasin, D., Pankka, P.: Sharpness of Rickman’s Picard theorem in all dimensions. Acta Math. 214(2), 209–306 (2015)

    Article  MathSciNet  Google Scholar 

  11. Eremenko, A., Lewis, J.: Uniform limits of certain A-harmonic functions with applications to quasiregular mappings. Ann. Acad. Sci. Fenn., Math. 16, 361–375 (1991)

    Article  MathSciNet  Google Scholar 

  12. Faraco, D., Zhong, X.: A short proof of the self-imroving regularity of quasiregular mappings. Proc. Am. Math. Soc. 134(1), 187–192 (2005)

    Article  Google Scholar 

  13. Finn, R., Serrin, J.: On the Hölder continuity of quasi-conformal and elliptic mappings. Trans. Am. Math. Soc. 89, 1–15 (1958)

    Google Scholar 

  14. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Oxford Lecture Series in Mathematics and Its Applications., vol. 2. Clarendon, New York (1995). Oxford Science Publications.

    Book  Google Scholar 

  15. Fuchs, W.H.J.: Topics in the Theory of Functions of One Complex Variable. Van Nostrand Mathematical Studies, vol. 12. Van Nostrand, Princeton (1967). Manuscript prepared with the collaboration of Alan Schumitsky

    Google Scholar 

  16. Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103(3), 353–393 (1962)

    Article  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  Google Scholar 

  18. Grötzsch, H.: Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardischen Satzes. Ber. Vehr. Sächs. Akad. Wiss. Leipzig 80, 503–507 (1928)

    Google Scholar 

  19. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, 688 (2000)

    Google Scholar 

  20. Hartman, P.: Hölder continuity and non-linear elliptic partial differential equations. Duke Math. J. 25, 57–65 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hayman, W.K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon, Oxford (1964)

    Google Scholar 

  22. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, New York (2006)

    Google Scholar 

  23. Holopainen, I., Rickman, S.: A Picard type theorem for quasiregular mappings of \(\mathbb{R}^{n}\) into n-manifolds with many ends. Rev. Math. Iberoam. 8(2), 131–148 (1992)

    Article  MathSciNet  Google Scholar 

  24. Holopainen, I., Rickman, S.: Ricci curvature, Harnack functions, and Picard-type theorems for quasiregular mappings. In: Cazacu, C.A., Lehto, O., Rassias, T. (eds.) Analysis and Topology, pp. 315–326. World Scientific, Singapore (1998)

    Chapter  Google Scholar 

  25. Hurewicz, W., Wallman, H.: Dimension Theory (PMS-4). Princeton University Press, Princeton (1948)

    Google Scholar 

  26. Iwaniec, T.: The Gehring lemma. In: Duren, P., Heinonen, J., Osgood, B., Palka, B. (eds.) Quasiconformal Mappings and Analysis: A Collection of Papers Honoring F.W. Gehring. Springer, Berlin (1998)

    Google Scholar 

  27. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Clarendon, Oxford (2001)

    Book  Google Scholar 

  28. Kangasniemi, I., Onninen, J.: On the heterogeneous distortion inequality. Math. Ann. 384, 1275–1308 (2022)

    Article  MathSciNet  Google Scholar 

  29. Kangasniemi, I., Onninen, J.: A single-point Reshetnyak’s theorem. Pre-print, https://arxiv.org/abs/2202.06917 (2022)

  30. Kangasniemi, I., Onninen, J.: Correction to “On the heterogeneous distortion inequality”. Math. Ann. (2023)

  31. Lewis, J.L.: Picard’s theorem and Rickman’s theorem by the way of Harnack’s inequality. Proc. Am. Math. Soc. 122(1), 199–206 (1994)

    MathSciNet  Google Scholar 

  32. Martin, G., Peltonen, K.: Stoïlow factorization for quasiregular mappings in all dimensions. Proc. Am. Math. Soc. 138(1), 147–151 (2010)

    Article  Google Scholar 

  33. Martio, O., Rickman, S., Väisälä, J.: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 448, 1–40 (1969)

    MathSciNet  Google Scholar 

  34. Martio, O., Rickman, S., Väisälä, J.: Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 465, 1–13 (1970)

    MathSciNet  Google Scholar 

  35. Martio, O., Rickman, S., Väisälä, J.: Topological and metric properties of quasiregular mappings. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 488, 1–31 (1971)

    MathSciNet  Google Scholar 

  36. Nirenberg, L.: On nonlinear elliptic partial differential equations and Hölder continuity. Commun. Pure Appl. Math. 6, 103 (1953)

    Article  Google Scholar 

  37. Rajala, K.: Mappings of finite distortion: the Rickman-Picard theorem for mappings of finite lower order. J. Anal. Math. 94(1), 235–248 (2004)

    Article  MathSciNet  Google Scholar 

  38. Reshetnyak, Y.G.: Bounds on moduli of continuity for certain mappings. Sib. Mat. Zh. 7, 1106–1114 (1966). (Russian)

    Article  Google Scholar 

  39. Reshetnyak, Y.G.: The Liouville theorem with mininal regularity conditions. Sib. Mat. Zh. 8, 835–840 (1967a). (Russian)

    Article  Google Scholar 

  40. Reshetnyak, Y.G.: On the condition of the boundedness of index for mappings with bounded distortion. Sib. Mat. Zh. 9, 368–374 (1967b). (Russian)

    MathSciNet  Google Scholar 

  41. Reshetnyak, Y.G.: Space mappings with bounded distortion. Sib. Mat. Zh. 8, 629–659 (1967c). (Russian)

    Article  Google Scholar 

  42. Reshetnyak, Y.G.: Space Mappings with Bounded Distortion. Translations of Mathematical Monographs, vol. 73. Am. Math. Soc., Providence (1989)

    Google Scholar 

  43. Rickman, S.: On the number of omitted values of entire quasiregular mappings. J. Anal. Math. 37, 100–117 (1980)

    Article  MathSciNet  Google Scholar 

  44. Rickman, S.: The analogue of Picard’s theorem for quasiregular mappings in dimension three. Acta Math. 154(3), 195–242 (1985)

    Article  MathSciNet  Google Scholar 

  45. Rickman, S.: Quasiregular Mappings, vol. 26. Springer, Berlin (1993)

    Book  Google Scholar 

  46. S̆abat, B.V.: On the theory of quasiconformal mappings in space. Dokl. Akad. Nauk SSSR 130, 1210–1213 (1960)

    Google Scholar 

  47. Segal, S.L.: Nine Introductions in Complex Analysis. Notas de Matemática [Mathematical Notes], vol. 80. North-Holland, Amsterdam (1981)

    Google Scholar 

  48. Simon, L.: A Hölder estimate for quasiconformal maps between surfaces in Euclidean space. Acta Math. 139, 19–51 (1977)

    Article  MathSciNet  Google Scholar 

  49. Väisälä, J.: On quasiconformal mappings in space. Ann. Acad. Sci. Fenn., Ser. A 1 298, 1–36 (1961)

    MathSciNet  Google Scholar 

  50. Väisälä, J.: Lectures on n-Dimensional Quasiconformal Mappings. Springer, Berlin (1971)

    Book  Google Scholar 

  51. Vekua, I.N.: Generalized Analytic Functions. Addison-Wesley, Reading (1962)

    Google Scholar 

  52. Zhang, G.Y.: Curves, domains and Picard’s theorem. Bull. Lond. Math. Soc. 34(2), 205–211 (2002)

    Article  MathSciNet  Google Scholar 

  53. Zorič, V.A.: On a correspondence of boundaries for q-quasiconformal mappings of a sphere. Dokl. Akad. Nauk SSSR 145, 31–34 (1962)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Pekka Pankka for several helpful comments and insights on the paper. We also thank the anonymous referee for numerous suggested improvements that ended up significantly improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Onninen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I. Kangasniemi was supported by the National Science Foundation grant DMS-2247469. J. Onninen was supported by the National Science Foundation grant DMS-2154943.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangasniemi, I., Onninen, J. Quasiregular Values and Rickman’s Picard Theorem. Geom. Funct. Anal. (2024). https://doi.org/10.1007/s00039-024-00674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00039-024-00674-x

Keywords and phrases

Mathematics Subject Classification

Navigation