Skip to main content
Log in

Symplectic cohomology and a conjecture of Viterbo

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We identify a new class of closed smooth manifolds for which there exists a uniform bound on the Lagrangian spectral norm of Hamiltonian deformations of the zero section in a unit cotangent disk bundle. This settles a well-known conjecture of Viterbo from 2007 as the special case of \(T^n,\) which has been completely open for \(n>1\). Our methods are different and more intrinsic than those of the previous work of the author first settling the case \(n=1\). The new class of manifolds is defined in topological terms involving the Chas–Sullivan algebra and the BV-operator on the homology of the free loop space. It contains spheres and is closed under products. We discuss generalizations and various applications, to \(C^0\) symplectic topology in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This will be the case of interest in all our examples.

  2. This is false in general in the non-exact case.

References

  1. A. Abbondandolo and M. Schwarz. Floer homology of cotangent bundles and the loop product. Geom. Topol., 14, 3 (2010), 1569–1722

    Article  MATH  Google Scholar 

  2. A. Abbondandolo and M. Schwarz. Corrigendum: On the Floer homology of cotangent bundles. Comm. Pure Appl. Math., 67, 4 (2014), 670–691

    Article  MATH  Google Scholar 

  3. M. Abouzaid. Nearby Lagrangians with vanishing Maslov class are homotopy equivalent. Invent. Math., 189, 2 (2012), 251–313

    Article  MATH  Google Scholar 

  4. M. Abouzaid. Symplectic cohomology and Viterbo’s theorem. In Free loop spaces in geometry and topology, volume 24 of IRMA Lect. Math. Theor. Phys., pages 271–485. European Mathematical Society, Zürich (2015)

  5. M. Abouzaid and T. Kragh. Simple homotopy equivalence of nearby Lagrangians. Acta Math., 220, 2 (2018), 207–237

    Article  MATH  Google Scholar 

  6. M. Abouzaid and P. Seidel. An open string analogue of Viterbo functoriality. Geom. Topol., 14, 2 (2010), 627–718

    Article  MATH  Google Scholar 

  7. D. Alvarez-Gavela, V. Kaminker, A. Kislev, K. Kliakhandler, A. Pavlichenko, L. Rigolli, D. Rosen, O. Shabtai, B. Stevenson, and J. Zhang. Embeddings of free groups into asymptotic cones of hamiltonian diffeomorphisms. J. Topol. Anal., 11, 2 (2019), 467–498

    Article  MATH  Google Scholar 

  8. P. Biran and O. Cornea. Bounds on the Lagrangian spectral metric in cotangent bundles. Comment. Math. Helv., 96, 4 (2021), 631–691

    Article  MATH  Google Scholar 

  9. P. Biran, O. Cornea, and E. Shelukhin. Lagrangian shadows and triangulated categories. Astérisque, 426 (2021), 128

    MATH  Google Scholar 

  10. P. Biran, M. Entov, and L. Polterovich. Calabi quasimorphisms for the symplectic ball. Commun. Contemp. Math., 6, 5 (2004), 793–802

    Article  MATH  Google Scholar 

  11. F. Bourgeois. A survey of contact homology. In New perspectives and challenges in symplectic field theory, volume 49 of CRM Proc., pages 45–71. American Mathematical Society, Providence, RI, (2009)

  12. L. Buhovsky, V. Humilière, and S. Seyfaddini. The action spectrum and \(C^0\) symplectic topology. Math. Ann., 380, 1–2 (2021), 293–316

    Article  MATH  Google Scholar 

  13. M. Cadek and Z. Moravec. Loop homology of quaternionic projective spaces. Preprint arXiv:1004.1550 (2010)

  14. M. Chas and D. Sullivan. String topology. Preprint, arXiv:math/9911159 (1999)

  15. D. Chataur and J.-F. Le Borgne. On the loop homology of complex projective spaces. Bull. Soc. Math. France, 139, 4 (2011), 503–518

    Article  MATH  Google Scholar 

  16. K. Cieliebak, N. Hingston, A. Oancea, and E. Shelukhin. Resonances and string point-invertibility for compact rank one symmetric spaces. In preparation

  17. R.L. Cohen and J.D.S. Jones. A homotopy theoretic realization of string topology. Math. Ann., 324, 4 (2002), 773–798

    Article  MATH  Google Scholar 

  18. G. Dimitroglou Rizell and M. Sullivan. The persistence of the Chekanov-Eliashberg algebra. Selecta Math. (N.S.), 26, 5 (2020), Paper No. 69, 32

    MATH  Google Scholar 

  19. M. Entov. Quasi-morphisms and quasi-states in symplectic topology. In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, pages 1147–1171. Kyung Moon Sa, Seoul, (2014)

  20. M. Entov and L. Polterovich. Calabi quasimorphism and quantum homology. Int. Math. Res. Not., 30 (2003), 1635–1676

  21. T. Etgü and Y. Lekili. Koszul duality patterns in Floer theory. Geom. Topol., 21, 6 (2017), 3313–3389

    Article  MATH  Google Scholar 

  22. Y. Félix, S. Halperin, and J.-C. Thomas. Rational homotopy theory, vol. 205. Springer-Verlag, New York, (2001)

  23. Y. Félix, L. Menichi, and J.-C. Thomas. Gerstenhaber duality in Hochschild cohomology. J. Pure Appl. Algebra, 199, 1–3 (2005), 43–59

    Article  MATH  Google Scholar 

  24. Y. Félix and J.-C. Thomas. Rational BV-algebra in string topology. Bull. Soc. Math. France, 136, 2 (2008), 311–327

    Article  MATH  Google Scholar 

  25. Y. Félix, J.-C. Thomas, and M. Vigué-Poirrier. Rational string topology. J. Eur. Math. Soc. (JEMS), 9, 1 (2007), 123–156

    MATH  Google Scholar 

  26. K. Fukaya, P. Seidel, and I. Smith. Exact Lagrangian submanifolds in simply-connected cotangent bundles. Invent. Math., 172, 1 (2008), 1–27

    Article  MATH  Google Scholar 

  27. J. Gutt and M. Hutchings. Symplectic capacities from positive \(S^{1}\)-equivariant symplectic homology. Algebr. Geom. Topol., 18, 6 (2018), 3537–3600

    Article  MATH  Google Scholar 

  28. R.A. Hepworth. String topology for complex projective spaces. Preprint arXiv:0908.1013 (2009)

  29. R.A. Hepworth. String topology for Lie groups. J. Topol., 3, 2 (2010), 424–442

    Article  MATH  Google Scholar 

  30. V. Humilière, R. Leclercq, and S. Seyfaddini. Coisotropic rigidity and \(C^0\)-symplectic geometry. Duke Math. J., 164, 4 (2015), 767–799

    Article  MATH  Google Scholar 

  31. B. Keller. Derived invariance of higher structures on the Hochschild complex. Preprint, available at https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf (2004)

  32. M. Khanevsky. Hofer’s metric on the space of diameters. J. Topol. Anal., 1, 4 (2009), 407–416

    Article  MATH  Google Scholar 

  33. A. Kislev and E. Shelukhin. Bounds on spectral norms and applications. Geom. Topol., 25, 7 (2021), 3257–3350

    Article  MATH  Google Scholar 

  34. T. Kragh. Parametrized ring-spectra and the nearby Lagrangian conjecture. Geom. Topol., 17, 2 (2013), 639–731. With an appendix by Mohammed Abouzaid

  35. S. Lanzat. Quasi-morphisms and symplectic quasi-states for convex symplectic manifolds. Int. Math. Res. Not., 23 (2013), 5321–5365

  36. F. Le Roux, S. Seyfaddini, and C. Viterbo. Barcodes and area-preserving homeomorphisms. Geom. Topol., 25, 6 (2021), 2713–2825

    Article  MATH  Google Scholar 

  37. R. Leclercq and F. Zapolsky. Spectral invariants for monotone Lagrangians. J. Topol. Anal., 10, 3 (2018), 627–700

    Article  MATH  Google Scholar 

  38. J. Lee. Fiberwise convexity of Hill’s lunar problem. J. Topol. Anal., 9, 4 (2017), 571–630

    Article  MATH  Google Scholar 

  39. E. Malm. String topology and the based loop space. PhD thesis, Stanford University (2010).

  40. L. Menichi. String topology for spheres. Comment. Math. Helv., 84, 1 (2009), 135–157. With an appendix by Gerald Gaudens and Menichi.

  41. L. Menichi. A Batalin–Vilkovisky algebra morphism from double loop spaces to free loops. Trans. Amer. Math. Soc., 363, 8 (2011), 4443–4462.

    Article  MATH  Google Scholar 

  42. A. Monzner, N. Vichery, and F. Zapolsky. Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization. J. Mod. Dyn., 6, 2 (2012), 205–249

    Article  MATH  Google Scholar 

  43. A. Monzner and F. Zapolsky. A comparison of symplectic homogenization and Calabi quasi-states. J. Topol. Anal., 3, 3 (2011), 243–263

    Article  MATH  Google Scholar 

  44. L. Polterovich, D. Rosen, K. Samvelyan, and J. Zhang. Topological Persistence in Geometry and Analysis, vol. 74. American Mathematical Society, Providence, RI (2020)

  45. L. Polterovich and E. Shelukhin. Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules. Selecta Math. (N.S.), 22, 1 (2016), 227–296

    Article  MATH  Google Scholar 

  46. L. Polterovich, E. Shelukhin, and V. Stojisavljević. Persistence modules with operators in Morse and Floer theory. Mosc. Math. J., 17, 4 (2017), 757–786

    Article  MATH  Google Scholar 

  47. D.A. Salamon and J. Weber. Floer homology and the heat flow. Geom. Funct. Anal., 16, 5 (2006), 1050–1138

    Article  MATH  Google Scholar 

  48. P. Seidel. Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008).

  49. P. Seidel. Disjoinable Lagrangian spheres and dilations. Invent. Math., 197, 2 (2014), 299–359

    Article  MATH  Google Scholar 

  50. P. Seidel and J. P. Solomon. Symplectic cohomology and \(q\)-intersection numbers. Geom. Funct. Anal., 22, 2 (2012), 443–477

    Article  MATH  Google Scholar 

  51. S. Seyfaddini. Descent and \(C^0\)-rigidity of spectral invariants on monotone symplectic manifolds. J. Topol. Anal., 4, 4 (2012), 481–498

    Article  MATH  Google Scholar 

  52. S. Seyfaddini. \(C^0\)-limits of Hamiltonian paths and the Oh–Schwarz spectral invariants. Int. Math. Res. Not. IMRN, 21 (2013), 4920–4960

    Article  MATH  Google Scholar 

  53. E. Shelukhin. On the Hofer-Zehnder conjecture. Ann. of Math. (2), 195, 3 (2022), 775–839

    Article  MATH  Google Scholar 

  54. E. Shelukhin. Viterbo conjecture for Zoll symmetric spaces. Invent. Math., (2022). https://doi.org/10.1007/s00222-022-01124-x

  55. B. Stevenson. A quasi-isometric embedding into the group of Hamiltonian diffeomorphisms with Hofer’s metric. Israel J. Math., 223, 1 (2018), 141–195

    Article  MATH  Google Scholar 

  56. V. Stojisavljević and J. Zhang. Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics. Internat. J. Math., 32, 7 (2021), 2150040, 76

    Article  MATH  Google Scholar 

  57. H. Tamanoi. Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds. Int. Math. Res. Not., pages Art. ID 97193, 23, (2006)

  58. D. Tonkonog. Private communication, (2019)

  59. M. Usher. Symplectic Banach-Mazur distances between subsets of \(\mathbb{C}^{n}\). J. Topol. Anal., 14, 1 (2022), 231–286

  60. M. Usher and J. Zhang. Persistent homology and Floer–Novikov theory. Geom. Topol., 20, 6 (2016), 3333–3430

  61. D. Vaintrob. The string topology BV algebra, Hochschild cohomology and the Goldman bracket on surfaces. Preprint arXiv:math/0702859 (2007)

  62. N. Vichery and V. Roos. Fixed points for the variational operator of the evolutive Hamilton-Jacobi equation. In preparation

  63. C. Viterbo. Symplectic homogenization. Preprint arXiv:0801.0206 (2014)

  64. C. Viterbo. Some remarks on Massey products, tied cohomology classes, and the Lusternik–Shnirelman category. Duke Math. J., 86, 3 (1997), 547–564

    Article  MATH  Google Scholar 

  65. C. Viterbo. Functors and computations in Floer homology with applications. I. Geom. Funct. Anal., 9, 5 (1999), 985–1033

    Article  MATH  Google Scholar 

  66. C. Westerland. String homology of spheres and projective spaces. Algebr. Geom. Topol., 7 (2007), 309–325

    Article  MATH  Google Scholar 

  67. T. Yang. A Batalin–Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials. Topology Appl., 160, 13 (2013), 1633–1651

    Article  MATH  Google Scholar 

  68. F. Zapolsky. On the Hofer geometry for weakly exact Lagrangian submanifolds. J. Symplectic Geom., 11, 3 (2013), 475–488

    Article  MATH  Google Scholar 

  69. J. Zhang. \(p\)-cyclic persistent homology and Hofer distance. J. Symplectic Geom., 17, 3 (2019), 857–927

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I thank Mohammed Abouzaid for suggesting to look at equivariant Lagrangians in the quantitative context, and Leonid Polterovich for motivating discussions on applying symplectic cohomology. I thank Paul Biran, Lev Buhovsky, Octav Cornea, Michael Entov, Helmut Hofer, Yanki Lekili, Alexandru Oancea, James Pascaleff, Dmitry Tonkonog, and Sara Venkatesh for useful conversations. I thank the referees for useful comments and suggestions which helped improve the exposition. This work was supported by an NSERC Discovery Grant and by the Fonds de recherche du Québec—Nature et technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor Shelukhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelukhin, E. Symplectic cohomology and a conjecture of Viterbo. Geom. Funct. Anal. 32, 1514–1543 (2022). https://doi.org/10.1007/s00039-022-00619-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-022-00619-2

Keywords and phrases

Mathematics Subject Classification

Navigation