Skip to main content
Log in

Sparse expanders have negative curvature

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove that bounded-degree expanders with non-negative Ollivier–Ricci curvature do not exist, thereby solving a long-standing open problem suggested by A. Naor and E. Milman and publicized by Y. Ollivier (2010). In fact, this remains true even if we allow for a vanishing proportion of large degrees, large eigenvalues, and negatively-curved edges. Moreover, the same conclusion applies to the Bakry–Émery curvature condition CD\((0,\infty )\), thereby settling a recent conjecture of D. Cushing, S. Liu and N. Peyerimhoff (2019). To establish those results, we work directly at the level of Benjamini–Schramm limits, and exploit the entropic characterization of the Liouville property on stationary random graphs to show that non-negative curvature and uniform expansion are incompatible “at infinity”. We then transfer this conclusion to finite graphs via local weak convergence. Our approach also shows that the class of finite graphs with non-negative curvature and degrees at most d is hyperfinite, for any fixed \(d\in {\mathbb {N}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David Aldous and Russell Lyons. Processes on unimodular random networks. Electron. J. Probab., 12(54) (2007), 1454–1508.

    MATH  Google Scholar 

  2. David Aldous and J. Michael Steele. The objective method: probabilistic combinatorial optimization and local weak convergence. In: Probability on Discrete Structures, volume 110 of Encyclopaedia of Mathematical Sciences, Springer, Berlin, (2004), pp. 1–72.

  3. Venkat Anantharam and Justin Salez. The densest subgraph problem in sparse random graphs. Ann. Appl. Probab., 26(1) (2016), 305–327.

    Article  MATH  Google Scholar 

  4. A. Avez. Harmonic functions on groups. In: Differential Geometry and Relativity. Mathematical Physics and Applied Mathematics, Vol. 3, (1976), pp. 27–32.

  5. André Avez. Entropie des groupes de type fini. C. R. Acad. Sci. Paris Sér. A-B, 275 (1972), A1363–A1366.

    MATH  Google Scholar 

  6. André Avez. Théorème de Choquet-Deny pour les groupes à croissance non exponentielle. C. R. Acad. Sci. Paris Sér. A, 279 (1974), 25–28.

    MATH  Google Scholar 

  7. D. Bakry and Michel Émery. Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Mathematics, Springer, Berlin, (1985), pp. 177–206.

  8. Dominique Bakry. Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In Séminaire de Probabilités, XXI, volume 1247 of Lecture Notes in Math., Springer, Berlin, (1987), pp. 137–172.

  9. Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and Geometry of Markov Diffusion Operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, (2014).

  10. Itai Benjamini and Nicolas Curien. Ergodic theory on stationary random graphs. Electron. J. Probab., 17(93) (2012), 20.

    MATH  Google Scholar 

  11. Itai Benjamini, Hugo Duminil-Copin, Gady Kozma, and Ariel Yadin. Disorder, entropy and harmonic functions. Ann. Probab., 43(5) (2015), 2332–2373.

    Article  MATH  Google Scholar 

  12. Itai Benjamini, Russell Lyons, and Oded Schramm. Percolation perturbations in potential theory and random walks. In: Random Walks and Discrete Potential Theory (Cortona, 1997), Symposium Mathematics, XXXIX. Cambridge University Press, Cambridge, (1999), pp. 56–84.

  13. Itai Benjamini, Russell Lyons, and Oded Schramm. Unimodular random trees. Ergodic Theory Dynam. Systems, 35(2) (2015), 359–373.

    Article  MATH  Google Scholar 

  14. Itai Benjamini, Elliot Paquette, and Joshua Pfeffer. Anchored expansion, speed and the Poisson–Voronoi tessellation in symmetric spaces. Ann. Probab., 46(4) (2018), 1917–1956.

    Article  MATH  Google Scholar 

  15. Itai Benjamini and Oded Schramm. Recurrence of distributional limits of finite planar graphs. Electron. J. Probab., 6(23) (2001), 13.

    MATH  Google Scholar 

  16. Charles Bordenave. Spectrum of random graphs. In: Advanced Topics in Random Matrices, volume 53 of Panor. Synthèses, Soc. Math. France, Paris, (2017), pp. 91–150..

  17. Charles Bordenave, Marc Lelarge, and Justin Salez. The rank of diluted random graphs. Ann. Probab., 39(3) (2011), 1097–1121.

    Article  MATH  Google Scholar 

  18. Charles Bordenave, Marc Lelarge, and Justin Salez. Matchings on infinite graphs. Probab. Theory Related Fields, 157(1-2) (2013), 183–208.

    Article  MATH  Google Scholar 

  19. Magnus Bordewich and Martin Dyer. Path coupling without contraction. J. Discrete Algorithms, 5(2) (2007), 280–292.

    Article  MATH  Google Scholar 

  20. D. P. Bourne, D. Cushing, S. Liu, F. Münch, and N. Peyerimhoff. Ollivier-Ricci idleness functions of graphs. SIAM J. Discrete Math., 32(2) (2018), 1408–1424.

    Article  MATH  Google Scholar 

  21. Thomas Keith Carne. A transmutation formula for Markov chains. Bull. Sci. Math. (2), 109(4) (1985), 399–405.

    MATH  Google Scholar 

  22. Matías Carrasco Piaggio and Pablo Lessa. Equivalence of zero entropy and the Liouville property for stationary random graphs. Electron. J. Probab., 21(55) (2016), 24.

    MATH  Google Scholar 

  23. D. Cushing, S. Kamtue, J. Koolen, S. Liu, F. Münch, and N. Peyerimhoff. Rigidity of the Bonnet–Myers inequality for graphs with respect to Ollivier Ricci curvature. Adv. Math., 369 (2020), 107188, 53.

    Article  MATH  Google Scholar 

  24. David Cushing, Riikka Kangaslampi, Valtteri Lipiäinen, Shiping Liu, and George W. Stagg. The graph curvature calculator and the curvatures of cubic graphs. Experimental Mathematics, (2019), 1–13.

  25. David Cushing, Shiping Liu, and Norbert Peyerimhoff. Bakry–Émery curvature functions on graphs. Canad. J. Math., 72(1) (2020), 89–143.

    Article  MATH  Google Scholar 

  26. Ronen Eldan, James R. Lee, and Joseph Lehec. Transport-entropy inequalities and curvature in discrete-space Markov chains. In: A Journey Through Discrete Mathematics, Springer, Cham, (2017), pp. 391–406.

  27. Gábor Elek. The combinatorial cost. Enseign. Math. (2), 53(3-4) (2007), 225–235.

    MATH  Google Scholar 

  28. Gábor Elek. On the limit of large girth graph sequences. Combinatorica, 30(5) (2010), 553–563.

    Article  MATH  Google Scholar 

  29. Max Fathi and Yan Shu. Curvature and transport inequalities for Markov chains in discrete spaces. Bernoulli, 24(1) (2018), 672–698.

    Article  MATH  Google Scholar 

  30. Bobo Hua. Liouville theorem for bounded harmonic functions on manifolds and graphs satisfying non-negative curvature dimension condition. Calc. Var. Partial Differential Equations, (2)58, (2019), Paper No. 42, 8.

  31. Jürgen Jost, Florentin Münch, and Christian Rose. Liouville property and non-negative Ollivier curvature on graphs, (2019).

  32. Aldéric Joulin. Poisson-type deviation inequalities for curved continuous-time Markov chains. Bernoulli, 13(3) (2007), 782–798.

    Article  MATH  Google Scholar 

  33. Aldéric Joulin and Yann Ollivier. Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab., (6)38 (2010), 2418–2442.

    Article  MATH  Google Scholar 

  34. V. A. Kaĭmanovich and A. M. Vershik. Random walks on discrete groups: boundary and entropy. Ann. Probab., (3)11 (1983), 457–490.

    Article  MATH  Google Scholar 

  35. Mark Kempton, Gabor Lippner, and Florentin Münch. Large scale Ricci curvature on graphs. Calc. Var. Partial Differential Equations, (5)59 (2020), Paper No. 166, 17.

  36. Bo’az Klartag, Gady Kozma, Peter Ralli, and Prasad Tetali. Discrete curvature and abelian groups. Canad. J. Math., (3)68 (2016), 655–674.

    Article  MATH  Google Scholar 

  37. Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. Tohoku Math. J. (2), (4)63 (2011), 605–627.

    Article  MATH  Google Scholar 

  38. Russell Lyons. Asymptotic enumeration of spanning trees. Combin. Probab. Comput., (4)14 (2005), 491–522.

    Article  MATH  Google Scholar 

  39. Russell Lyons and Shayan Oveis Gharan. Sharp bounds on random walk eigenvalues via spectral embedding. Int. Math. Res. Not. IMRN, (24) (2018), 7555–7605.

  40. Russell Lyons, Robin Pemantle, and Yuval Peres. Ergodic theory on Galton-Watson trees: speed of random walk and dimension of harmonic measure. Ergodic Theory Dynam. Systems, (3)15 (1995), 593–619.

    Article  MATH  Google Scholar 

  41. Russell Lyons and Yuval Peres. Probability on Trees and Networks, volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, (2016).

  42. Jan Maas. Entropic Ricci curvature for discrete spaces. In: Modern Approaches to Discrete Curvature, volume 2184 of Lecture Notes in Mathematics, Springer, Cham, (2017), pp. 159–174.

  43. Florentin Münch. Li–Yau inequality under \(CD(0,n)\) on graphs. arXiv e-prints, page arXiv:1909.10242, (2019).

  44. Florentin Münch. Non-negative Ollivier curvature on graphs, reverse Poincaré inequality, Buser inequality, Liouville property, Harnack inequality and eigenvalue estimates. arXiv e-prints, page arXiv:1907.13514, (2019).

  45. Florentin Münch and Radosław K. Wojciechowski. Ollivier Ricci curvature for general graph Laplacians: heat equation, Laplacian comparison, non-explosion and diameter bounds. Adv. Math., 356 (2019), 45.

    Article  MATH  Google Scholar 

  46. Yann Ollivier. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris, 345(11) (2007), 643–646.

    Article  MATH  Google Scholar 

  47. Yann Ollivier. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal., 256(3) (2009), 810–864.

    Article  MATH  Google Scholar 

  48. Yann Ollivier. A survey of Ricci curvature for metric spaces and Markov chains. In: Probabilistic Approach to Geometry, volume 57 of Advanced Studies in Pure Mathematics. Mathematical Society Japan, Tokyo, (2010), pp. 343–381.

  49. Oded Schramm. Hyperfinite graph limits. Electron. Res. Announc. Math. Sci., 15 (2008), 17–23.

    MATH  Google Scholar 

  50. Nicholas Th Varopoulos. Long range estimates for Markov chains. Bull. Sci. Math., 109(3) (1985), 225–252.

    MATH  Google Scholar 

  51. Cédric Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, (2003).

Download references

Acknowledgements

The author warmly thanks M. Abért, I. Benjamini, N. Curien, D. Cushing, S. Liu, R. Lyons, F. Münch, P. Pansu, G. Pete, and two anonymous referees for many wonderful comments and references. This work was partially supported by Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Salez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salez, J. Sparse expanders have negative curvature. Geom. Funct. Anal. 32, 1486–1513 (2022). https://doi.org/10.1007/s00039-022-00618-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-022-00618-3

Navigation