Lionel Bérard-Bergery. Quelques exemples de variétés riemanniennes complètes non compactes à courbure de Ricci positive. C. R. Acad. Sci. Paris Sér. I Math., 302(4) (1986), 159–161.
MathSciNet
MATH
Google Scholar
Jeff Cheeger and Tobias H. Colding. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. (2), 144(1) (1996), 189–237.
MathSciNet
Article
Google Scholar
Jeff Cheeger and Tobias H. Colding. On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom., 46(3) (1997), 406–480.
MathSciNet
Article
Google Scholar
Jeff Cheeger and Tobias H. Colding. On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom., 54(1) (2000), 13–35.
MathSciNet
MATH
Google Scholar
Jeff Cheeger and Tobias H. Colding. On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom., 54(1) (2000), 37–74.
MathSciNet
MATH
Google Scholar
Tobias H. Colding and Aaron Naber. Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math., 176(2) (2012), 1173–1229.
MathSciNet
Article
Google Scholar
Qin Deng. Hölder continuity of tangent cones in RCD(K,N) spaces and applications to non-branching. arXiv:2009.07956, (2020).
Kenji Fukaya. Theory of convergence for Riemannian orbifolds. Jpn. J. Math. (N.S.), 12 (1) (1986), 121–160.
MathSciNet
Article
Google Scholar
Kenji Fukaya and Takao Yamaguchi. The fundamental groups of almost nonnegatively curved manifolds. Ann. Math., 136(2) (1992), 253–333.
MathSciNet
Article
Google Scholar
Xavier Menguy. Examples of nonpolar limit spaces. Am. J. Math., 122(5) (2000), 927–937.
MathSciNet
Article
Google Scholar
Aaron Naber. Conjectures and open questions on the structure and regularity of spaces with lower Ricci curvature bounds. SIGMA Symmetry Integrability Geom. Methods Appl., 16:Paper No. 104 (2020), 8.
Philippe Nabonnand. Sur les variétés riemanniennes complètes à courbure de Ricci positive. C. R. Acad. Sci. Paris Sér. A-B, 291(10) (1980), A591–A593.
MathSciNet
MATH
Google Scholar
Jiayin Pan. On the escape rate of geodesic loops in an open manifold with nonnegative Ricci curvature. Geom. Topol., 25(2) (2021), 1059–1085.
MathSciNet
Article
Google Scholar
Jiayin Pan. Nonnegative Ricci curvature and escape rate gap. J. Reine Angew. Math.https://doi.org/10.1515/crelle-2021-0065 (2021).
Guofang Wei. Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups. Bull. Am. Math. Soc. (N.S.), 19(1) (1988), 311–313.
MathSciNet
Article
Google Scholar