Skip to main content
Log in

Isometry group of Lorentz manifolds: A coarse perspective

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove a structure theorem for the isometry group \({\text {Iso}}(M,g)\) of a compact Lorentz manifold, under the assumption that a closed subgroup has exponential growth. We don’t assume anything about the identity component of \({\text {Iso}}(M,g)\), so that our results apply for discrete isometry groups. We infer a full classification of lattices that can act isometrically on compact Lorentz manifolds. Moreover, without any growth hypothesis, we prove a Tits alternative for discrete subgroups of \({\text {Iso}}(M,g)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Amoros, M. Burger, K. Corlette, D. Kotschick and D. Toledo, Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs 44, American MathematicalSociety, Providence, RI, 1996.

  • S. Adams, G. Stuck, The isometry group of a compact Lorentz manifold. I. Invent. Math, 129(2) (1997), 239–261.

  • S. Adams and G. Stuck, The isometry group of a compact Lorentz manifold. II. Invent. Math, 129(2) (1997), 263–287.

    Article  MathSciNet  Google Scholar 

  • E. Bedford and J. Dadok. Bounded domains with prescribed group of automorphisms. Comment. Math. Helv, 62(4) (1987), 561–572.

    Article  MathSciNet  Google Scholar 

  • R. Blumenthal and J. Hebda. de Rham decomposition theorems for foliated manifolds. Ann Inst. Fourier, 33 (1983), 183–198.

    Article  MathSciNet  Google Scholar 

  • R. Blumenthal and J. Hebda. An analogue of the holonomy bundle for a foliated manifold. Tohoku Math. J., 40(2) (1988), 189–197.

    Article  MathSciNet  Google Scholar 

  • B. Bekka, P. de la Harpe and A. Valette. Kazhdan’s Property (T). Cambridge University Press, Cambridge, (2008).

  • G. Bell and A. Dranishnikov. Asymptotic dimension. Topology Appl., 155(12) (2008), 1265–1296.

    Article  MathSciNet  Google Scholar 

  • S. Buyalo and V. Schroeder. Elements of asymptotic geometry. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2007.

  • Y. Carrière, Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math., 95 (1989), 615–628.

    Article  MathSciNet  Google Scholar 

  • Y. Cornulier and P. de la Harpe. Metric geometry of locally compact groups. EMS Tracts in Mathematics, 25. European Mathematical Society (EMS), Zürich, (2016).

  • S. Cantat, T. Delzant and P. Py. Kähler groups, real hyperbolic spaces and the Cremona group. Compositio Math., 148(1), 2012.

  • J.A Carlson and D. Toledo. Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989) 173–201.

  • G. D’Ambra. Isometry groups of Lorentz manifolds. Invent. Math, 92(3) (1988), 555–565.

    Article  MathSciNet  Google Scholar 

  • C. Drutu and M. Kapovich. Geometric Group Theory. American Mathematical Society Colloquium Publications. 63, (2018).

  • T. Delabie, J. Koivisto, F. Le Maître and R. Tessera. Quantitative measure equivalence between finitely generated groups. Preprint available from ArXiv, arXiv:2002.00719v2

  • C. Frances. Lorentz dynamics on closed 3-manifolds. Ann. H. Lebesgue, 3 (2020), 407–471.

    Article  MathSciNet  Google Scholar 

  • C. Frances. Variations on Gromov’s open-dense orbit theorem. Bulletin de la SMF, 146(4) (2018), 713–744.

  • D. Fried and W. Goldman. Three-dimensional affine crystallographic groups. Adv. Math., 47(1) (1983), 1–49.

    Article  MathSciNet  Google Scholar 

  • D. Fisher and R.J Zimmer. Geometric lattice actions, entropy and fundamental groups. Comment. Math. Helv, 77(2) (2002), 326–338.

    Article  MathSciNet  Google Scholar 

  • S. Hurtado, A. Kocksard and F. Rodriguez Hertz. The Burnside problem for \(Diff(S^2)\). To appear in Duke Mathematical Journal (2020).

  • D. Hume, J. Mackay and R. Tessera. Poincaré profiles of groups and spaces. Rev. Mat. Iberoamericana, 6, (2019).

  • D. Hume and A. Sisto, Groups with no coarse embeddings into hyperbolic groups. New York J. Math., 23 (2017), 1657–1670.

    MathSciNet  MATH  Google Scholar 

  • C. Godbillon. Feuilletages. (French) Études géométriques. Progress in Mathematics, 98. Birkhäuser Verlag, Basel, (1991).

  • W. Goldman and M. Hirsch. The radiance obstruction and parallel forms on affine manifolds. Trans. Amer. Math. Soc, 286(2) (1984), 629–649

    Article  MathSciNet  Google Scholar 

  • M. Gromov. Rigid transformation groups, Géométrie Différentielle, (D. Bernard et Choquet-Bruhat Ed.), Travaux en cours, Hermann, Paris, 33, (1988), 65–141.

  • M. Gromov. Asymptotic invariants of infinite groups, in: Geometric Group Theory, vol. 2. London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, (1993), pp. 1–295.

  • D. Hume, J. Mackay and R. Tessera. Poincaré profiles of groups and spaces. Rev. Mat. Iberoamericana, 6, 2019.

  • D.L. Johnson and L.B. Whitt. Totally geodesic foliations. J. Differential Geom, 15 (1980), 225–235.

    MathSciNet  MATH  Google Scholar 

  • B. Klingler. Complétude des variétés lorentziennes à courbure constante. Math. Ann, 306(2) (1996), 353–370

    Article  MathSciNet  Google Scholar 

  • S. Kobayashi. Transformation groups in differential geometry. Reprint of the 1972 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

  • S. Kobayashi and K. Nomizu. Foundations of differential geometry I (New York : Interscience Publishers, 1963).

    MATH  Google Scholar 

  • N.Kowalsky. Noncompact simple automorphism groups of Lorentz manifolds and other geometric manifolds. Ann. of Math. (2) 144 (1996) 3, 611–640

    Article  MathSciNet  Google Scholar 

  • R. Kulkarni and F. Raymond. \(3\)-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differential Geometry, 21(2) 1985, 231–268.

    Article  MathSciNet  Google Scholar 

  • C. Le Coz and A. Gournay. Separation profiles, isoperimetry, growth and compression. Preprint available from ArXiv, arXiv:1910.11733, 2019.

  • F. Ledrappier. Quelques propriétés des exposants caractéristiques. Lecture Notes in Math., 1097, Springer, Berlin, 1984.

  • A. Lubotzky, S. Mozes and M.S. Raghunathan. The word and Riemannian metrics on lattices of semisimple groups. Publications Mathématiques de l’Institut des Hautes Scientifiques, 91 2000, 5–53

    Article  MathSciNet  Google Scholar 

  • K. Matsuzaki and M. Taniguchi. Hyperbolic Manifolds and Kleinian groups, Oxford Science Publications, Clarendon Press, 1998.

    MATH  Google Scholar 

  • K. Melnick. Isometric actions of Heisenberg groups on compact Lorentz manifolds. Geom. Dedicata, 126 (2007), 131–154.

    Article  MathSciNet  Google Scholar 

  • K. Melnick. A Frobenius theorem for Cartan geometries, with applications. L’Enseignement Mathématique (Série II), 57 (2011), no. 1-2, 57–89

  • S.B. Myers and N.E. Steenrod. The group of isometries of a Riemannian manifold. Ann. of Math. (2) 40 (1939), no. 2, 400–416.

    Article  MathSciNet  Google Scholar 

  • I. Mundet i Riera. Isometry groups of closed Lorentz 4-manifolds are Jordan. Geom. Dedicata, 207 (2020), 201–207.

  • K. Nomizu. On local and global existence of Killing fields. Ann. of Math, 72 (1960), no. 2, 105–112.

    Article  MathSciNet  Google Scholar 

  • V. Pécastaing. On two theorems about local automorphisms of geometric structures. Ann. Inst. Fourier, 66 (2016), no. 1, 175–208.

    Article  MathSciNet  Google Scholar 

  • F. Rampazzo. Frobenius-type theorems for Lipschitz distributions, J.Differential Equations, 243 (2007), no. 2, 270–300.

    Article  MathSciNet  Google Scholar 

  • M. Rosenlicht. A remark on quotient spaces. An. Acad. Brasil. Cienc, 35(4) (1963), 487–489.

    MathSciNet  MATH  Google Scholar 

  • M. Rosenlicht. Quotient varieties and the affine embedding of certain homogeneous spaces. Trans. of the AMS, 101 (1961), 211–223.

    Article  MathSciNet  Google Scholar 

  • A. Sard. Hausdorff Measure of Critical Images on Banach Manifolds. Amer. Journ. of Math, 87(1), 158–174.

  • R. Saerens and W.R. Zame. The isometry groups of manifolds and the automorphism groups of domains. Trans. Amer. Math. Soc, 301 (1987), no. 1, 413–429.

    Article  MathSciNet  Google Scholar 

  • R.W. Sharpe. Differential Geometry: Cartan’s generalization of Klein’s Erlangen Program. New York, Springer, 1997.

  • S. Simić. Lipschitz distributions and Anosov flows. Proc. Amer. Math. Soc, 124(6) (1996), 1869–1877.

    Article  MathSciNet  Google Scholar 

  • S. Sternberg. Lectures on Differential Geometry. Prentice-Hall, 1964.

  • R.A. Struble. Metrics in locally compact groups. Compositio Math, 28 (1974), 217–222.

    MathSciNet  MATH  Google Scholar 

  • R. Tessera. On coarse embeddings of amenable groups into hyperbolic graphs. Preprint available from ArXiv, arXiv:2010.07205.

  • W. Thurston. Three dimensional geometry and topology. Vol 1. Princeton University Press, Edited by Silvio Levy, 1997.

  • A. Zeghib. Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics. Geom. Funct. Anal, 9 (1999), no. 4, 775–822.

    Article  MathSciNet  Google Scholar 

  • A. Zeghib. Isometry groups and geodesic foliations of Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry group. Geom. Funct. Anal, 9 (1999), no. 4, 823–854.

    Article  MathSciNet  Google Scholar 

  • A. Zeghib. Sur les espaces-temps homogènes. (French. English summary) [On homogeneous space-times] The Epstein birthday schrift, 551–576, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998.

  • A. Zeghib. The identity component of the isometry group of a compact Lorentz manifold. Duke Math. J, 92 (1998), no. 2, 321–333.

    Article  MathSciNet  Google Scholar 

  • C. Boubel and A. Zeghib. Isometric actions of Lie subgroups of the Moebius group. Nonlinearity, 17 (2004), no. 5, 1677–1688.

    Article  MathSciNet  Google Scholar 

  • A. Zeghib and P. Piccione. Actions of discrete groups on stationary Lorentz manifolds. Ergodic Theory and Dynamical Systems, 34 (2014), no. 5, 1640–1673.

    Article  MathSciNet  Google Scholar 

  • R.J. Zimmer. Kazhdan groups acting on compact manifolds. Invent. Math, 75 (1984), 425–436.

    Article  MathSciNet  Google Scholar 

  • R.J. Zimmer. On the automorphism group of a compact Lorentz manifold and other geometric manifolds. Invent. Math, (3)83 (1986), 411–424

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I warmly thank Pierre Py, Romain Tessera and Abdelghani Zeghib for enlightning conversations, and the referee for very valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Frances.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frances, C. Isometry group of Lorentz manifolds: A coarse perspective. Geom. Funct. Anal. 31, 1095–1159 (2021). https://doi.org/10.1007/s00039-021-00585-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-021-00585-1

Navigation