Skip to main content
Log in

Ergodic theory of affine isometric actions on Hilbert spaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The classical Gaussian functor associates to every orthogonal representation of a locally compact group G a probability measure preserving action of G called a Gaussian action. In this paper, we generalize this construction by associating to every affine isometric action of G on a Hilbert space, a one-parameter family of nonsingular Gaussian actions whose ergodic properties are related in a very subtle way to the geometry of the original action. We show that these nonsingular Gaussian actions exhibit a phase transition phenomenon and we relate it to new quantitative invariants for affine isometric actions. We use the Patterson-Sullivan theory as well as Lyons-Pemantle work on tree-indexed random walks in order to give a precise description of this phase transition for affine isometric actions of groups acting on trees. We also show that every locally compact group without property (T) admits a nonsingular Gaussian that is free, weakly mixing and of stable type \(\mathrm{III}_1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The reason is that the Gaussian measure \(\mu _x(B)\) of the unit ball centered at x goes to 0 when the dimension of \({\mathcal {H}}\) goes to infinity

  2. Recall that an orthogonal representation \(\pi : G \rightarrow {\mathcal {O}}(H)\) has stable spectral gap if the representation \(\pi \otimes \rho \) has no almost invariant vectors for every representation \(\rho : G \rightarrow {\mathcal {O}}(H)\).

References

  1. J. Aaronson. An introduction to infinite ergodic theory. Math. Surveys and Monographs 50, Amer. Math. Soc., Providence, 1997.

  2. C. Anantharaman-Delaroche. On spectral characterizations of amenability. Israel J. Math. 137, 2003.

  3. S. Adams, G. A. Elliot, and T. Giordano. Amenable Actions of Groups. Trans. of the Amer. Math. Soc. 344 (1994), 803–822.

    Article  MathSciNet  Google Scholar 

  4. C. Berg, and J. P. R. Christensen. Sur la norme des opérateurs de convolution. Invent. Math. 23 (1974), 173–178.

    Article  MathSciNet  Google Scholar 

  5. A.F. Beardon. The Exponent of Convergence of Poincaré Series. Proc. of the London Math. Soc. s3-18 (1968), 461-483.

    Article  Google Scholar 

  6. L. Bowen, Y. Hartman, and O. Tamuz. Property (T) and the Furstenberg entropy of nonsingular actions. Proc. Amer. Math. Soc. 144, 31–39.

  7. B. Bekka, P. de la Harpe, and A. Valette. Kazhdan’s property (T). Cambridge University Press, 2008.

  8. H. Bass, and R. Kulkarni. Uniform tree lattices. J. of Amer. Math. Soc. 3 (1990), 843–902.

    Article  MathSciNet  Google Scholar 

  9. M. Björklund, Z. Kosloff, and S. Vaes. Ergodicity and type of nonsingular Bernoulli actions. arXiv:1901.05723

  10. R. Boutonnet. Plusieurs aspects de rigidité des algèbres de von Neumann, PhD Thesis, 2014.

  11. B. Bekka, T. Pillon, and A. Valette, Irreducible affine isometric actions on Hilbert spaces. Münster J. of Math. 9 (2016), 1–34.

    MathSciNet  MATH  Google Scholar 

  12. P-E. Caprace, Y. Cornulier, N. Monod, and R. Tessera. Amenable hyperbolic groups. J. Eur. Math. Soc. 17 (2015) no. 11, 2903–2947.

    Article  MathSciNet  Google Scholar 

  13. P-E. Caprace, and T. De Medts. Simple locally compact groups acting on trees and their germs of automorphisms. Transform. Groups 16 Nr. 2 (2011), 375–411.

    Article  MathSciNet  Google Scholar 

  14. Y. Cornulier, R. Tessera, and A. Valette. Isometric group actions on Hilbert spaces: growth of cocycles. Geom. Funct. Anal. 17 (2007), 770–792.

    Article  MathSciNet  Google Scholar 

  15. A. Connes, and B. Weiss. Property (T) and asymptotically invariant sequences, Israel J. Math. 37 (1980) no. 3, 209–10.

    Article  MathSciNet  Google Scholar 

  16. T. Das, D. Simmons, and M. Urbański. Geometry and dynamics in Gromov hyperbolic metric spaces. With an emphasis on non-proper settings., Math. Surveys and Monographs 218 (2017), Amer. Math. Soc.

  17. A. Erschler, and N. Ozawa. Finite-dimensional representations constructed from random walks. Comment. Math. Helv., 93 (2018), 555–586.

    Article  MathSciNet  Google Scholar 

  18. A. Freslon. Positive definite functions and cut-off for discrete groups. arXiv:1810.02692.

  19. M. Gromov. Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, (1987), 75–263.

  20. S. Hersonsky, and J. Hubbard. Groups of automorphisms of trees and their limit sets. Ergodic Theory and Dynamical Systems, 4 (1997), 869–884.

    Article  MathSciNet  Google Scholar 

  21. R. L. Hudson, and K. R. Parthasarathy. Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93 (1984), 301–323.

  22. H. Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 (1959), 336–354.

    Article  MathSciNet  Google Scholar 

  23. D. Kyed, H. D. Petersen, and S. Vaes. \({\rm L}^2\)-Betti numbers of locally compact groups and their cross section equivalence relations. Trans. Amer. Math. Soc. 367 (2015), 4917–4956.

    Article  MathSciNet  Google Scholar 

  24. R. Lyons, and R. Pemantle. Random Walk in a Random Environment and First-Passage Percolation on Trees. Ann. Probab. 20 (1992), no. 1, 125–136.

    Article  MathSciNet  Google Scholar 

  25. N. Ozawa. A functional analysis proof of Gromov’s Polynomial growth theorem. Ann. Sci. Éc. Norm. Supér. 51 (2018), 549–556.

  26. S.-J. Patterson. The limit set of a fuchsian group. Acta mathematica 136 (1976), 241–273.

    Article  MathSciNet  Google Scholar 

  27. Y. Peres. Probability on Trees: An Introductory Climb. Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, 1717. Springer, Berlin, Heidelberg.

  28. J. Peterson, and T. Sinclair. On cocycle superrigidity for Gaussian actions. Erg. Th. & Dyn. Sys. 32 (2012), 249–272.

    Article  MathSciNet  Google Scholar 

  29. J.-F. Quint. An overview of Patterson-Sullivan theory. Workshop The barycenter method, FIM, Zurich (2006).

  30. T. Roblin, and S. Tapie. Exposants critiques et moyennabilité. Géométrie Ergodique, Monographie No. 43 de l’Enseignement Mathématique, ed. F. Dal’Bo-Milonet, Genève 2013.

  31. K. Schmidt. Amenability, Kazhdan’s property (T), strong ergodicity and invariant means for ergodic groups actions. Ergodic Th. & Dynam. Sys. 1 (1981), 223–36.

    Article  MathSciNet  Google Scholar 

  32. K. Schmidt. From infinitely divisible representations to cohomological rigidity, Analysis, geometry and probability, 173–197, Texts Read. Math., 10, Hindustan Book Agency, Delhi, 1996.

  33. Y. Shalom. Harmonic analysis, cohomology, and the large-scale geometry of amenable groups. Acta Math. 192 (2004), no. 2, 119–185.

    Article  MathSciNet  Google Scholar 

  34. D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. de l’IHES 50 (1979), 171–202.

  35. K. Schmidt, and P. Walters. Mildly mixing actions of locally compact groups. Proc. London Math. Soc. (3) 45 (1982), 506–518.

    Article  MathSciNet  Google Scholar 

  36. J. Tits. Sur le groupe des automorphismes d’un arbre. Essays on Topology and Related Topics. Springer, Berlin, Heidelberg. (1970), 188–211.

  37. S. Vaes, and J. Wahl. Bernoulli actions of type\({\rm III}_1\)and\({\rm L}^2\)-cohomology. Geom. Funct. Anal. 28 (2018), 518–562.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their deep gratitude to Stefaan Vaes for his interest in our work and for finding several mistakes in an earlier version of this paper. His advice also helped us to improve the presentation. We are grateful to Narutaka Ozawa for his numerous comments and for providing us with a correct proof of Proposition 4.11. We are grateful to Frederic Paulin for his explanations regarding the references [Su79] and [RT13]. We thank Michel Pain for explaining to us the additive martingale argument of Theorem 9.4. We thank Tushar Das for attracting our attention to the monograph [DSU17] and his comments on our paper. Finally we thank Amaury Freslon for pointing out to us the relations between our work and [Fr18] and [HP84].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Marrakchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

YI is supported by JSPS KAKENHI Grant Number JP18K13424.

YI is supported by JSPS KAKENHI Grant Number JP17K14201.

AM was a JSPS International Research Fellow (PE18760)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arano, Y., Isono, Y. & Marrakchi, A. Ergodic theory of affine isometric actions on Hilbert spaces. Geom. Funct. Anal. 31, 1013–1094 (2021). https://doi.org/10.1007/s00039-021-00584-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-021-00584-2

Keywords

Mathematics Subject Classification

Navigation