Skip to main content
Log in

Point-like bounding chains in open Gromov–Witten theory

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 01 December 2021

This article has been updated

Abstract

We present a solution to the problem of defining genus zero open Gromov–Witten invariants with boundary constraints for a Lagrangian submanifold of arbitrary dimension. Previously, such invariants were known only in dimensions 2 and 3 from the work of Welschinger. Our approach does not require the Lagrangian to be fixed by an anti-symplectic involution, but can use such an involution, if present, to obtain stronger results. Also, non-trivial invariants are defined for broader classes of interior constraints and Lagrangian submanifolds than previously possible even in the presence of an anti-symplectic involution. The invariants of the present work specialize to invariants of Welschinger, Fukaya, and Georgieva in many instances. The main obstacle to defining open Gromov–Witten invariants with boundary constraints in arbitrary dimension is the bubbling of J-holomorphic disks. Unlike in low dimensions or for interior constraints, disk bubbles do not cancel in pairs by anti-symplectic involution symmetry. Rather, we use the technique of bounding chains introduced in Fukaya–Oh–Ohta–Ono’s work on Lagrangian Floer theory to cancel disk bubbling. At the same time and independently, gauge equivalence classes of bounding chains play the role of boundary constraints, in place of the cohomology classes that usually serve as constraints in Gromov–Witten theory. A crucial step in our construction is to identify a canonical up to gauge equivalence family of “point-like” bounding chains, which specialize in dimensions 2 and 3 to the point constraints considered by Welschinger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Change history

References

  • M. Aganagic and C. Vafa, Mirror Symmetry, D-Branes and Counting Holomorphic Discs, arXiv e-prints (2000), arXiv:hep-th/0012041.

  • M. Aganagic, T. Ekholm, L. Ng, and C. Vafa, Topological strings, D-model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014), no. 4, 827–956.

  • P. Biran and O. Cornea, Lagrangian topology and enumerative geometry, Geom. Topol. 16 (2012), no. 2, 963–1052, https://doi.org/10.2140/gt.2012.16.963.

  • P. Biran and C. Membrez, The Lagrangian cubic equation, Int. Math. Res. Not. IMRN (2016), no. 9, 2569–2631, https://doi.org/10.1093/imrn/rnv192.

  • E. Brugallé and P. Georgieva, Pencils of quadrics and Gromov–Witten–Welschinger invariants of\({\mathbb{C}}{\rm P}^3\), Math. Ann. 365 (2016), no. 1-2, 363–380, https://doi.org/10.1007/s00208-016-1398-x.

  • E. Brugallé and G. Mikhalkin, Enumeration of curves via floor diagrams, C. R. Math. Acad. Sci. Paris 345 (2007), no. 6, 329–334, https://doi.org/10.1016/j.crma.2007.07.026.

  • E. Brugallé and G. Mikhalkin, Floor decompositions of tropical curves: the planar case, Proceedings of Gökova Geometry-Topology Conference 2008, Gökova Geometry/Topology Conference (GGT), Gökova, 2009, pp. 64–90.

  • X. Chen, Solomon-Tukachinsky’s vs. Welschinger’s Open Gromov-Witten Invariants of Symplectic Sixfolds, arXiv e-prints, arXiv:1912.05437 (2019)

  • C.-H. Cho, Counting real\(J\)-holomorphic discs and spheres in dimension four and six, J. Korean Math. Soc. 45 (2008), no. 5, 1427–1442, https://doi.org/10.4134/JKMS.2008.45.5.1427.

  • C.-H. Cho, On the counting of holomorphic discs in toric Fano manifolds, Adv. Geom. 13 (2013), no. 2, 191–210, https://doi.org/10.1515/advgeom-2012-0041.

  • T. Ekholm and V. Shende, Skeins on Branes, arXiv e-prints (2019), arXiv:1901.08027.

  • M. Farajzadeh Tehrani, Counting genus-zero real curves in symplectic manifolds, Geom. Topol. 20 (2016), no. 2, 629–695, Part II jointly authored with Aleksey Zinger, https://doi.org/10.2140/gt.2016.20.629.

  • K. Fukaya, Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math. 50 (2010), no. 3, 521–590, https://doi.org/10.1215/0023608X-2010-004.

  • K. Fukaya, Counting pseudo-holomorphic discs in Calabi-Yau 3-folds, Tohoku Math. J. (2) 63 (2011), no. 4, 697–727, https://doi.org/10.2748/tmj/1325886287.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Parts I,II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151 (2010), no. 1, 23–174, https://doi.org/10.1215/00127094-2009-062.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609–711, https://doi.org/10.1007/s00029-011-0057-z.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Astérisque (2016), no. 376, vi+340.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Antisymplectic involution and Floer cohomology, Geom. Topol. 21 (2017), no. 1, 1–106, https://doi.org/10.2140/gt.2017.21.1.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: II, arXiv e-prints (2018), arXiv:1808.06106.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory, Mem. Amer. Math. Soc. 260 (2019), no. 1254, x+266, https://doi.org/10.1090/memo/1254.

  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Kuranishi structures and virtual fundamental chains, Springer Monographs in Mathematics, Springer, Singapore, 2020, https://doi.org/10.1007/978-981-15-5562-6.

  • K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933–1048, https://doi.org/10.1016/S0040-9383(98)00042-1.

  • W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96, https://doi.org/10.1090/pspum/062.2/1492534.

  • P. Georgieva, Open Gromov-Witten disk invariants in the presence of an anti-symplectic involution, Adv. Math. 301 (2016), 116–160, https://doi.org/10.1016/j.aim.2016.06.009.

  • P. Georgieva and A. Zinger, Enumeration of real curves in\(\mathbb{CP}^{2n-1}\)and a Witten–Dijkgraaf–Verlinde–Verlinde relation for real Gromov–Witten invariants, Duke Math. J. 166 (2017), no. 17, 3291–3347, https://doi.org/10.1215/00127094-2017-0023.

  • R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999), no. 5, 1415–1443, https://doi.org/10.4310/ATMP.1999.v3.n5.a5.

  • M. Herbst, C.-I. Lazaroiu, and W. Lerche, Superpotentials, \(A_\infty \)relations and WDVV equations for open topological strings, J. High Energy Phys. (2005), no. 2, 071, 53 pp. (electronic), https://doi.org/10.1088/1126-6708/2005/02/071.

  • H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory. I. A splicing-based differential geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 841–876, https://doi.org/10.4171/JEMS/99.

  • H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory. II. Implicit function theorems, Geom. Funct. Anal. 19 (2009), no. 1, 206–293, https://doi.org/10.1007/s00039-009-0715-x.

  • H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory. III. Fredholm functors and polyfolds, Geom. Topol. 13 (2009), no. 4, 2279–2387, https://doi.org/10.2140/gt.2009.13.2279.

  • H. Hofer, K. Wysocki, and E. Zehnder, Integration theory on the zero sets of polyfold Fredholm sections, Math. Ann. 346 (2010), no. 1, 139–198, https://doi.org/10.1007/s00208-009-0393-x.

  • K. Hugtenberg, J.P. Solomon, and S.B. Tukachinsky, Examples of relative quantum cohomology, in preparation.

  • V. Iacovino, Open Gromov-Witten theory on Calabi-Yau three-folds I, arXiv e-prints (2009), arXiv:0907.5225.

  • V. Iacovino, Open Gromov-Witten theory on Calabi-Yau three-folds II, arXiv e-prints (2009), arXiv:0908.0393.

  • V. Iacovino, Obstruction classes and Open Gromov-Witten invariants, arXiv e-prints (2011), arXiv:1108.3313.

  • I. Itenberg, V. Kharlamov, and E. Shustin, New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants, Tr. Mat. Inst. Steklova 258 (2007), no. Anal. i Osob. Ch. 1, 70–78, https://doi.org/10.1134/S0081543807030078.

  • I.V. Itenberg, V.M. Kharlamov, and E.I. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, Uspekhi Mat. Nauk 59 (2004), no. 6(360), 85–110, https://doi.org/10.1070/RM2004v059n06ABEH000797.

  • D. Joyce, Kuranishi homology and Kuranishi cohomology, arXiv e-prints (2007), arXiv:0707.3572.

  • S. Katz and C.-C.M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001), no. 1, 1–49.

  • M. Kontsevich and Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562.

  • C.I. Lazaroiu, String field theory and brane superpotentials, J. High Energy Phys. (2001), no. 10, Paper 18, 40, https://doi.org/10.1088/1126-6708/2001/10/018.

  • J. Li and K. Wehrheim, \(A_\infty \)structures from Morse trees with pseudoholomorphic disks, preprint.

  • C.-C.M. Liu, Moduli of\(J\)-Holomorphic Curves with Lagrangian Boundary Conditions and Open Gromov-Witten Invariants for an\(S^1\)-Equivariant Pair, arXiv e-prints (2002), arXiv:math/0210257.

  • D. McDuff and D. Salamon, \(J\)-holomorphic curves and symplectic topology, second ed., American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2012.

  • R. Pandharipande, J. Solomon, and J. Walcher, Disk enumeration on the quintic 3-fold, J. Amer. Math. Soc. 21 (2008), no. 4, 1169–1209, https://doi.org/10.1090/S0894-0347-08-00597-3.

  • Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367.

  • J.P. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, arXiv e-prints (2006), arXiv:math/0606429.

  • J.P. Solomon, Involutions, obstructions and mirror symmetry, Adv. Math. 367 (2020), 107107, 52, https://doi.org/10.1016/j.aim.2020.107107.

  • J.P. Solomon and S.B. Tukachinsky, Differential forms, Fukaya\(A_\infty \)algebras, and Gromov-Witten axioms, arXiv e-prints (2016), arXiv:1608.01304, to appear in J. Symplectic Geom.

  • J.P. Solomon and S.B. Tukachinsky, Relative quantum cohomology, arXiv e-prints (2019), arXiv:1906.04795.

  • R. Tessler, New constructions of open Gromov-Witten invariants and their calculations, in preparation.

  • A. Tomasiello, \(A\)-infinity structure and superpotentials, J. High Energy Phys. (2001), no. 9, Paper 30, 9, https://doi.org/10.1088/1126-6708/2001/09/030.

  • C. Vafa, Extending mirror conjecture to Calabi-Yau with bundles, Commun. Contemp. Math. 1 (1999), no. 1, 65–70, https://doi.org/10.1142/S0219199799000043.

  • J. Walcher, Opening mirror symmetry on the quintic, Comm. Math. Phys. 276 (2007), no. 3, 671–689, https://doi.org/10.1007/s00220-007-0354-8.

  • K. Wehrheim and C. Woodward, Orientations for pseudoholomorphic quilts, arXiv e-prints (2015), arXiv:1503.07803.

  • J.-Y. Welschinger, Enumerative invariants of stongly semipositive real symplectic six-manifolds, arXiv e-prints (2005), arXiv:math/0509121.

  • J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), no. 1, 195–234, https://doi.org/10.1007/s00222-005-0445-0.

  • J.-Y. Welschinger, Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants, Duke Math. J. 127 (2005), no. 1, 89–121, https://doi.org/10.1215/S0012-7094-04-12713-7.

  • J.-Y. Welschinger, Open Gromov-Witten invariants in dimension six, Math. Ann. 356 (2013), no. 3, 1163–1182, https://doi.org/10.1007/s00208-012-0883-0.

  • J.-Y. Welschinger, Open Gromov-Witten invariants in dimension four, J. Symplectic Geom. 13 (2015), no. 4, 1075–1100, https://doi.org/10.4310/JSG.2015.v13.n4.a8.

  • E. Witten, Chern-Simons gauge theory as a string theory, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 637–678.

  • A. Zernik, Equivariant A-infinity algebras for nonorientable Lagrangians, arXiv e-prints (2015), arXiv:1512.04507.

  • A.N. Zernik, Fixed-point Localization for\(\mathbb{RP}^{2m} \subset \mathbb{CP}^{2m}\), arXiv e-prints (2017), arXiv:1512.04507.

Download references

Acknowledgements

The authors would like to thank M. Abouzaid, D. Auroux, P. Georgieva, D. Joyce, T. Kimura, E. Kosloff, M. Liu, L. Polterovich, E. Shustin, I. Smith, G. Tian, and A. Netser Zernik, for helpful conversations. The authors were partially supported by ERC starting Grant 337560 and ISF Grant 1747/13. The first author was partially supported by ISF Grant 569/18. The second author was partially supported by the Canada Research Chairs Program and NSF Grant No. DMS-163852.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, J.P., Tukachinsky, S.B. Point-like bounding chains in open Gromov–Witten theory. Geom. Funct. Anal. 31, 1245–1320 (2021). https://doi.org/10.1007/s00039-021-00583-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-021-00583-3

Keywords and phrases

Mathematics Subject Classification

Navigation