Skip to main content
Log in

Non-asymptotic Results for Singular Values of Gaussian Matrix Products

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

This article provides a non-asymptotic analysis of the singular values (and Lyapunov exponents) of Gaussian matrix products in the regime where N,  the number of terms in the product, is large and n,  the size of the matrices, may be large or small and may depend on N. We obtain concentration estimates for sums of Lyapunov exponents, a quantitative rate for convergence of the empirical measure of the squared singular values to the uniform distribution on [0, 1], and results on the joint normality of Lyapunov exponents when N is sufficiently large as a function of n. Our technique consists of non-asymptotic versions of the ergodic theory approach at \(N=\infty \) due originally to Furstenberg and Kesten (Ann Math Stat 31(2):457–469, 1960) in the 1960s, which were then further developed by Newman (Commun Math Phys 103(1):121–126, 1986) and Isopi and Newman (Commun Math Phys 143(3):591–598, 1992) as well as by a number of other authors in the 1980s. Our key technical idea is that small ball probabilities for volumes of random projections gives a way to quantify convergence in the multiplicative ergodic theorem for random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Artstein-Avidan, A. Giannopoulos, and V.D. Milman. Asymptotic geometric analysis, Part I, Volume 202. American Mathematical Society, Providence (2015).

    Book  Google Scholar 

  2. G. Akemann and Z. Burda. Universal microscopic correlation functions for products of independent Ginibre matrices. Journal of Physics A: Mathematical and Theoretical, (46)45 (2012), 465201

    Article  MathSciNet  Google Scholar 

  3. G. Akemann, Z. Burda, and M. Kieburg. Universal distribution of Lyapunov exponents for products of Ginibre matrices. Journal of Physics A: Mathematical and Theoretical, (39)47 (2014), 395202

    Article  MathSciNet  Google Scholar 

  4. G. Akemann, Z. Burda, and M. Kieburg. From integrable to chaotic systems: universal local statistics of Lyapunov exponents. EPL (Europhysics Letters), (4)126 (2019), 40001

    Article  Google Scholar 

  5. G. Akemann, Z. Burda, M. Kieburg, and T. Nagao. Universal microscopic correlation functions for products of truncated unitary matrices. Journal of Physics A: Mathematical and Theoretical, (25)47 (2014), 255202

    Article  MathSciNet  Google Scholar 

  6. G.B. Arous and A. Guionnet. Large deviations for Wigner’s law and voiculescu’s non-commutative entropy. Probability Theory and Related Fields, (4)108 (1997), 517–542

    Article  MathSciNet  Google Scholar 

  7. A. Ahn. Fluctuations of beta-Jacobi product processes. arXiv preprintarXiv:1910.00743 (2019).

  8. G. Akemann and J.R. Ipsen. Recent exact and asymptotic results for products of independent random matrices. arXiv preprintarXiv:1502.01667 (2015).

  9. R. Adamczak, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. Journal of the American Mathematical Society, (2)23 (2010), 535–561

    Article  MathSciNet  Google Scholar 

  10. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, Ninth Dover Printing, Tenth GPO Printing Edition (1964).

  11. K. Ball. The reverse isoperimetric problem for gaussian measure. Discrete & Computational Geometry, (4)10 (1993), 411–420

    Article  MathSciNet  Google Scholar 

  12. T. Banica, S.T. Belinschi, M. Capitaine, and B. Collins. Free Bessel laws. Canadian Journal of Mathematics, (1)63 (2011), 3–37

    Article  MathSciNet  Google Scholar 

  13. V. Bentkus. On the dependence of the Berry–Esseen bound on dimension. Journal of Statistical Planning and Inference, (2)113 (2003), 385–402

    Article  MathSciNet  Google Scholar 

  14. V. Bentkus. A Lyapunov-type bound in RD. Theory of Probability & Its Applications, (2)49 (2005), 311–323

    Article  MathSciNet  Google Scholar 

  15. P. Bougerol, P. Lacroix, Jean as well as Huber, and Murray (eds) Rosenblatt. The Concentration of Measure Phenomenon. Progress in Probability (1985).

  16. R. Carmona. Exponential localization in one dimensional disordered systems. Duke Mathematical Journal, (1)49 (1982), 191–213

    Article  MathSciNet  Google Scholar 

  17. J.E. Cohen and C.M. Newman. The stability of large random matrices and their products. The Annals of Probability, (1984), 283–310

  18. D. Damanik. A short course on one-dimensional random schrodinger operators. arXiv preprintarXiv:1107.1094 (2011).

  19. F.J. Dyson. Statistical theory of the energy levels of complex systems. I. Journal of Mathematical Physics, (1)3 (1962), 140–156

    Article  MathSciNet  Google Scholar 

  20. S. Filip. Notes on the multiplicative ergodic theorem. Ergodic Theory and Dynamical Systems, (5)39 (2019), 1153–1189

    Article  MathSciNet  Google Scholar 

  21. H. Furstenberg and H. Kesten. Products of random matrices. The Annals of Mathematical Statistics, (2)31 (1960), 457–469

    Article  MathSciNet  Google Scholar 

  22. P.J. Forrester and D.-Z. Liu. Singular values for products of complex ginibre matrices with a source: hard edge limit and phase transition. Communications in Mathematical Physics, (1)344 (2016), 333–368

    Article  MathSciNet  Google Scholar 

  23. P.J. Forrester. Lyapunov exponents for products of complex gaussian random matrices. Journal of Statistical Physics, (5)151 (2013), 796–808

    Article  MathSciNet  Google Scholar 

  24. P.J. Forrester. Eigenvalue statistics for product complex wishart matrices. Journal of Physics A: Mathematical and Theoretical, (34)47 (2014), 345202

    Article  MathSciNet  Google Scholar 

  25. F. Götze and J. Jalowy. Rate of convergence to the circular law via smoothing inequalities for log-potentials. arXiv preprintarXiv:1807.00489 (2018).

  26. V. Gorin and Y. Sun. Gaussian fluctuations for products of random matrices. arXiv preprintarXiv:1812.06532 (2018)

  27. F. Götze and A. Tikhomirov. On the asymptotic spectrum of products of independent random matrices. arXiv preprintarXiv:1012.2710 (2010).

  28. B. Hanin and M. Nica. Products of many large random matrices and gradients in deep neural networks. Communications in Mathematical Physics, (2019) 1–36

  29. D. Huang, J. Niles-Weed, J.A. Tropp, and R. Ward. Matrix concentration for products. arXiv preprintarXiv:2003.05437 (2020).

  30. A. Henriksen and R. Ward. Concentration inequalities for random matrix products. Linear Algebra and Its Applications, 594 (2020), 81–94

    Article  MathSciNet  Google Scholar 

  31. M. Isopi and C.M. Newman. The triangle law for Lyapunov exponents of large random matrices. Communications in Mathematical Physics, (3)143 (1992), 591–598

    Article  MathSciNet  Google Scholar 

  32. J. Jalowy. Rate of convergence for products of independent non-Hermitian random matrices. arXiv preprintarXiv:1912.09300 (2019).

  33. K. Johansson. Determinantal processes with number variance saturation. Communications in Mathematical Physics, (1-3)252 (2004), 111–148

    Article  MathSciNet  Google Scholar 

  34. O. Kallenberg. Foundations of Modern Probability. Springer, Berlin (2002).

    Book  Google Scholar 

  35. V. Kargin. Lyapunov exponents of free operators. Journal of Functional Analysis, (8)255 (2008), 1874–1888

    Article  MathSciNet  Google Scholar 

  36. M. Kieburg and H. Kösters. Exact relation between singular value and eigenvalue statistics. Random Matrices: Theory and Applications, (04)5 (2016), 1650015

    Article  MathSciNet  Google Scholar 

  37. T. Kathuria, S. Mukherjee, and N. Srivastava. On concentration inequalities for random matrix products. arXiv preprintarXiv:2003.06319 (2020).

  38. R. Latała. Estimation of moments of sums of independent real random variables. The Annals of Probability, (3)25 (1997), 1502–1513

    Article  MathSciNet  Google Scholar 

  39. É. Le Page. Théoremes limites pour les produits de matrices aléatoires. In: Probability Measures on Groups. Springer, Berlin (1982), pp. 258–303.

  40. D.-Z. Liu and Y. Wang. Phase transitions for infinite products of large non-hermitian random matrices. arXiv preprintarXiv:1912.11910 (2019).

  41. D.-Z. Liu, D. Wang, and Y. Wang. Lyapunov exponent, universality and phase transition for products of random matrices. arXiv preprintarXiv:1810.00433 (2018).

  42. D.-Z. Liu, D. Wang, and L. Zhang. Bulk and soft-edge universality for singular values of products of ginibre random matrices. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, Vol. 52 (2016). Institut Henri Poincaré, pp. 1734–1762.

  43. F. Nazarov. On the maximal perimeter of a convex set in \({{\mathbb{R}}}^n\) with respect to a gaussian measure. In: Geometric Aspects of Functional Analysis. Springer, Berlin (2003), pp. 169–187.

  44. Y. Nemish. Local law for the product of independent non-Hermitian random matrices with independent entries. Electronic Journal of Probability, 22 (2017).

  45. C.M. Newman. The distribution of Lyapunov exponents: exact results for random matrices. Communications in Mathematical Physics, (1)103 (1986), 121–126

    Article  MathSciNet  Google Scholar 

  46. S. O’Rourke and A. Soshnikov. Products of independent non-Hermitian random matrices. Electronic Journal of Probability, 16 (2011), 2219–2245

    MathSciNet  MATH  Google Scholar 

  47. V.I. Oseledets. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. Trudy Moskovskogo Matematicheskogo Obshchestva, 19 (1968) 179–210

    MathSciNet  Google Scholar 

  48. G. Paouris. Concentration of mass on convex bodies. Geometric & Functional Analysis GAFA, (5)16 (2006), 1021–1049

    Article  MathSciNet  Google Scholar 

  49. G. Paouris and P. Pivovarov. Small-ball probabilities for the volume of random convex sets. Discrete & Computational Geometry, (3)49 (2013), 601–646

    Article  MathSciNet  Google Scholar 

  50. N.K. Reddy. Lyapunov exponents and eigenvalues of products of random matrices. arXiv preprintarXiv:1606.07704 (2016).

  51. N.K. Reddy. Equality of Lyapunov and stability exponents for products of isotropic random matrices. International Mathematics Research Notices, (2)2019 (2019), 606–624

    Article  MathSciNet  Google Scholar 

  52. M. Rudelson. Lecture notes on non-aymptotic random matrix theory. In: Modern Aspects of Random Matrix Theory—AMS Proceedings of Symposia in Applied Mathematics (2014), pp. 83–121.

  53. M. Rudelson. Delocalization of eigenvectors of random matrices. lecture notes. arXiv preprintarXiv:1707.08461 (2017).

  54. M. Rudelson and R. Vershynin. The Littlewood–Offord problem and invertibility of random matrices. Advances in Mathematics, (2)218 (2008), 600–633

    Article  MathSciNet  Google Scholar 

  55. M. Rudelson and R. Vershynin. Smallest singular value of a random rectangular matrix. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, (12)62 (2009) 1707–1739

    Article  MathSciNet  Google Scholar 

  56. M.D. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish (1970).

  57. T. Tao. An Epsilon of Room, II: Pages from Year Three of a Mathematical Blog. American Mathematical Society, Providence (2010).

  58. K. Tikhomirov. Singularity of random bernoulli matrices. Annals of Mathematics, (2)191 (2020), 593–634.

    Article  MathSciNet  Google Scholar 

  59. J. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends® in Machine Learning, (1-)8 (2015), 1–230

    Article  Google Scholar 

  60. G.H. Tucci. Limits laws for geometric means of free random variables. Indiana University Mathematics Journal, (2010) 1–13

  61. R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. pages 210–268. Cambridge University Press, Cambridge (2012).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Vadim Gorin, Maurice Duits, and Gernot Akemann for pointing us to a number of interesting references. We would also like to thank a referee for a very careful and helpful reading of an earlier draft that pointed out a number of inaccuracies and ultimately lead to a substantially improved exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Hanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

BH is supported by NSF Grants DMS-1855684 and CCF-1934904.

GP is supported by NSF Grants DMS-1812240 and CCF-1900929.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanin, B., Paouris, G. Non-asymptotic Results for Singular Values of Gaussian Matrix Products. Geom. Funct. Anal. 31, 268–324 (2021). https://doi.org/10.1007/s00039-021-00560-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-021-00560-w

Navigation