Skip to main content

Non-simplicity of Isocontact Embeddings in All Higher Dimensions

Abstract

In this article we show that in any dimension there exist infinitely many pairs of formally contact isotopic isocontact embeddings into the standard contact sphere which are not contact isotopic. This is the first example of rigidity for contact submanifolds in higher dimensions. The contact embeddings are constructed via contact push-offs of higher-dimensional Legendrian submanifolds, a construction that generalizes the union of the positive and negative transverse push-offs of a Legendrian knot to higher dimensions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • V.I. Arnol’ d. Singularities of Caustics and Wave Fronts, volume 62 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1990).

  • V.I. Arnol’ d. Some remarks on symplectic monodromy of Milnor fibrations. In: The Floer Memorial Volume, volume 133 of Progress in Mathematics, Birkhäuser, Basel (1995), pp. 99–103.

  • V.I. Arnol’ d and A.B. Givental’. Symplectic geometry [MR0842908 (88b:58044)]. In: Dynamical Systems, IV, volume 4 of Encyclopaedia Mathematical Sciences, Springer, Berlin (2001), pp. 1–138.

  • D. Auroux and I. Smith. Lefschetz pencils, branched covers and symplectic invariants. In: Symplectic 4-Manifolds and Algebraic Surfaces, volume 1938 of Lecture Notes in Mathematics, Springer, Berlin (2008), pp. 1–53.

  • R. Avdek. Liouville hypersurfaces and connect sum cobordisms. ArXiv e-prints (April 2012).

  • D. Bennequin. Entrelacements et équations de Pfaff. In: Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982), volume 107 of Astérisque, Society of Mathematics France, Paris (1983), pp. 87–161.

  • J.S. Birman and W.W. Menasco. Stabilization in the braid groups. II. Transversal simplicity of knots. Geom. Topol., 10 (2006), 1425–1452 (electronic)

  • M. Borman, Y. Eliashberg, and E. Murphy. Existence and classification of overtwisted contact structures in all dimensions. ArXiv e-prints (April 2014)

  • M.S. Borman, Y. Eliashberg, and E. Murphy. Existence and classification of overtwisted contact structures in all dimensions. Acta Math., (2)215 (2015), 281–361

    Google Scholar 

  • F. Bourgeois, T. Ekholm, and Y. Eliashberg. Effect of Legendrian surgery. Geom. Topol., (1)16 (2012), 301–389. With an appendix by Sheel Ganatra and Maksim Maydanskiy

  • F. Bourgeois and A. Oancea. An exact sequence for contact- and symplectic homology. Invent. Math., (3)175 (2009), 611–680

    Google Scholar 

  • F. Bourgeois, J.M. Sabloff, and L. Traynor. Lagrangian cobordisms via generating families: construction and geography. Algebr. Geom. Topol., (4)15 (2015), 2439–2477

    Google Scholar 

  • R. Casals and E. Murphy. Legendrian fronts for affine varieties. Duke Math. J., (2)168 (2019), 1–136

    Google Scholar 

  • R. Casals, E. Murphy, and F. Presas. Geometric criteria for overtwistedness. J. Am. Math. Soc., (2)32 (2019), 563–604

    Google Scholar 

  • K. Cieliebak and Y. Eliashberg. From Stein to Weinstein and Back, volume 59 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2012), Symplectic geometry of affine complex manifolds.

  • K. Cieliebak and Y. Eliashberg. Stein structures: existence and flexibility. In: Contact and Symplectic Topology, volume 26 of Bolyai Society Mathematical Studies, János Bolyai Math. Soc., Budapest (2014), pp. 357–388.

  • V. Colin. Livres ouverts en géométrie de contact (d’après Emmanuel Giroux). Astérisque, (317):Exp. No. 969, vii, 91–117, (2008), Séminaire Bourbaki. Vol. 2006/2007.

  • S.K. Donaldson. Symplectic submanifolds and almost-complex geometry. J. Differ. Geom., (4)44 (1996), 666–705

    Google Scholar 

  • T. Ekholm, J. Etnyre, L. Ng, and M. Sullivan. Filtrations on the knot contact homology of transverse knots. Math. Ann., (4)355 (2013), 1561–1591

    Google Scholar 

  • T. Ekholm, J. Etnyre, and M. Sullivan. The contact homology of Legendrian submanifolds in \({\mathbb{R}}^{2n+1}\). J. Differ. Geom., (2)71 (2005), 177–305

    Google Scholar 

  • T. Ekholm, J. Etnyre, and M. Sullivan. Non-isotopic Legendrian submanifolds in \({\mathbb{R}}^{2n+1}\). J. Differ. Geom., (1)71 (2005), 85–128

    Google Scholar 

  • Y. Eliashberg. Classification of overtwisted contact structures on \(3\)-manifolds. Invent. Math., (3)98 (1989), 623–637

    Google Scholar 

  • Y. Eliashberg. Weinstein manifolds revisited. Modern Geometry: A Celebration of the Work of Simon Donaldson, Proceedings of Symposia in Pure Mathematics, (2018), 99

  • Y. Eliashberg, A. Givental, and H. Hofer. Introduction to symplectic field theory. Geometric and Functional Analysis, (Special Volume, Part II), (2000), GAFA 2000 (Tel Aviv, 1999), 560–673

  • Y. Eliashberg and N. Mishachev. Introduction to the \(h\)-Principle, volume 48 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2002)

  • Y. Eliashberg. Topological characterization of Stein manifolds of dimension > 2. Internat. J. Math., (1)1 (1990), 29–46

  • Y. Eliashberg. Recent advances in symplectic flexibility. Bull. Am. Math. Soc. (N.S.), (1)52 (2015), 1–26

    Google Scholar 

  • Y. Eliashberg and M. Gromov. Convex symplectic manifolds. In. Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), volume 52 of Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, RI (1991), pp. 135–162.

  • Y. Eliashberg and E. Murphy. Lagrangian caps. Geom. Funct. Anal., (5)23 (2013), 1483–1514

    Google Scholar 

  • J. Epstein, D. Fuchs, and M. Meyer. Chekanov–Eliashberg invariants and transverse approximations of Legendrian knots. Pac. J. Math., (1)201 (2001), 89–106

    Google Scholar 

  • J.B. Etnyre. Planar open book decompositions and contact structures. Int. Math. Res. Not., (79) (2004), 4255–4267

    Google Scholar 

  • J.B. Etnyre. Legendrian and transversal knots. In. Handbook of Knot Theory. Elsevier B. V., Amsterdam (2005), pp. 105–185.

  • J.B. Etnyre and R. Furukawa. Braided embeddings of contact 3-manifolds in the standard contact 5-sphere. J. Topol., (2)10 (2017), 412–446

    Google Scholar 

  • J.B. Etnyre and K. Honda. Cabling and transverse simplicity. Ann. Math. (2), (3)162 (2005), 1305–1333

    Google Scholar 

  • J.B. Etnyre, D.J. LaFountain, and B. Tosun. Legendrian and transverse cables of positive torus knots. Geom. Topol., (3)16 (2012), 1639–1689

    Google Scholar 

  • J.B. Etnyre and Y. Lekili. Embedding all contact 3-manifolds in a fixed contact 5-manifold. J. Lond. Math. Soc., (0)0

  • J.B. Etnyre, L.L. Ng, and V. Vértesi. Legendrian and transverse twist knots. J. Eur. Math. Soc. (JEMS), (3)15 (2013), 969–995

    Google Scholar 

  • J.B. Etnyre and J. VanHorn-Morris. Fibered transverse knots and the Bennequin bound. Int. Math. Res. Not. IMRN, (7) (2011), 1483–1509

    Google Scholar 

  • H. Federer and W.H. Fleming. Normal and integral currents. Ann. Math. (2), 72 (1960), 458–520

    Google Scholar 

  • U. Frauenfelder, F. Schlenk, and O. vanKoert. Displaceability and the mean Euler characteristic. Kyoto J. Math., (4)52 (2012), 797–815

    Google Scholar 

  • K. Fukaya. Mirror symmetry of abelian varieties and multi-theta functions. J. Algebraic Geom., (3)11 (2002), 393–512

    Google Scholar 

  • H. Geiges. Constructions of contact manifolds. Math. Proc. Camb. Philos. Soc., (3)121 (1997), 455–464

    Google Scholar 

  • H. Geiges. An Introduction to Contact Topology, volume 109 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2008).

  • E. Giroux. Convexité en topologie de contact. Comment. Math. Helv., (4)66 (1991), 637–677

    Google Scholar 

  • E. Giroux. Géométrie de contact: de la dimension trois vers les dimensions supérieures. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing (2002), pp. 405–414.

  • J. Gonzalo. Branched covers and contact structures. Proc. Am. Math. Soc., (2)101 (1987), 347–352

    Google Scholar 

  • M. Gromov. Pseudoholomorphic curves in symplectic manifolds. Invent. Math., (2)82 (1985), 307–347

    Google Scholar 

  • M. Gromov. Partial Differential Relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1986)

  • S. Harvey, K. Kawamuro, and O. Plamenevskaya. On transverse knots and branched covers. Int. Math. Res. Not. IMRN, (3) (2009), 512–546

    Google Scholar 

  • K. Honda and Y. Huang. Bypass attachments in higher-dimensional contact topology. ArXiv e-prints (2018).

  • A. Ibort, D. Martínez-Torres, and F. Presas. On the construction of contact submanifolds with prescribed topology. J. Differ. Geom., (2)56 (2000), 235–283

  • M. Kwon and O. vanKoert. Brieskorn manifolds in contact topology. Bull. Lond. Math. Soc., (2)48 (2016), 173–241

    Google Scholar 

  • O. Lazarev. Maximal contact and symplectic structures. ArXiv e-prints (2018).

  • R. Lutz. Sur quelques propriétés des formes differentielles en dimension trois. Thèse, Strasbourg (1971).

  • J. Martinet. Formes de contact sur les variétés de dimension \(3\). In. Proceedings of Liverpool Singularities Symposium, II (1969/1970), Lecture Notes in Math., Vol. 209. Springer, Berlin (1971), pp. 142–163.

  • J. Moser. On the volume elements on a manifold. Trans. Am. Math. Soc., 120 (1965), 286–294.

    Google Scholar 

  • E. Murphy. Loose Legendrian Embeddings in High Dimensional Contact Manifolds. ArXiv e-prints (January 2012)

  • E. Murphy and K. Siegel. Subflexible symplectic manifolds. Geom. Topol., (4)22 (2018), 2367–2401

    Google Scholar 

  • D. Nadler. Arboreal singularities. Geom. Topol., (2)21 (2017), 1231–1274

    Google Scholar 

  • L. Ng. Combinatorial knot contact homology and transverse knots. Adv. Math., (6)227 (2011), 2189–2219

    Google Scholar 

  • K. Niederkrüger and F. Presas. Some remarks on the size of tubular neighborhoods in contact topology and fillability. Geom. Topol., (2)14 (2010), 719–754

    Google Scholar 

  • K. Niederkrüger and O. vanKoert. Every contact manifolds can be given a nonfillable contact structure. Int. Math. Res. Not. IMRN, (23)Art. ID rnm115 (2007), 22

  • P. Ozsváth, Z. Szabó, and D. Thurston. Legendrian knots, transverse knots and combinatorial Floer homology. Geom. Topol., (2)12 (2008), 941–980

    Google Scholar 

  • F. Öztürk and K. Niederkrüger. Brieskorn manifolds as contact branched covers of spheres. Period. Math. Hungar., (1)54 (2007), 85–97

    Google Scholar 

  • P.S. Pancholi. D.M. Iso-contact embeddings of manifolds in co-dimension 2. ArXiv e-prints (2018)

  • O. Plamenevskaya. Transverse knots and Khovanov homology. Math. Res. Lett., (4)13 (2006), 571–586

    Google Scholar 

  • O. Plamenevskaya. Transverse knots, branched double covers and Heegaard Floer contact invariants. J. Symplectic Geom., (2)4 (2006), 149–170

    Google Scholar 

  • F. Presas. A class of non-fillable contact structures. Geom. Topol., 11 (2007), 2203–2225

    Google Scholar 

  • R.C. Randell. The homology of generalized Brieskorn manifolds. Topology, (4)14 (1975), 347–355

    Google Scholar 

  • D. Rolfsen. Knots and links. Publish or Perish Inc., Berkeley, Calif. (1976), Mathematics Lecture Series, No. 7.

  • P. Seidel. Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)

  • L. Starkston. Arboreal singularities in weinstein skeleta. Selecta Math. to appear.

  • P. Uebele. Symplectic homology of some Brieskorn manifolds. Math. Z., (1-2)283 (2016), 243–274

    Google Scholar 

  • O. vanKoert. Lecture notes on stabilization of contact open books. Münster J. Math., (2)10 (2017), 425–455

    Google Scholar 

  • A. Weinstein. Contact surgery and symplectic handlebodies. Hokkaido Math. J., (2)20 (1991), 241–251

    Google Scholar 

  • B. White. A new proof of the compactness theorem for integral currents. Comment. Math. Helv., (2)64 (1989), 207–220

    Google Scholar 

  • Z. Zhou. Vanishing of Symplectic Homology and Obstruction to Flexible Fillability. ArXiv e-prints (October 2017).

Download references

Acknowledgements

We are thankful to the referee for their detailed report. We are also grateful to them for suggesting the current argument for Lemma 3.4. We are grateful to Jo Nelson and Jeremy Van Horn Morris for useful discussions. R. Casals is supported by the NSF Grant DMS-1841913 and a BBVA Research Fellowship. J. Etnyre is partially supported by the NSF Grant DMS-1608684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Casals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casals, R., Etnyre, J.B. Non-simplicity of Isocontact Embeddings in All Higher Dimensions. Geom. Funct. Anal. 30, 1–33 (2020). https://doi.org/10.1007/s00039-020-00527-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-020-00527-3

Mathematics Subject Classification

  • Primary 53D10
  • Secondary 53D15
  • 57R17