Metric Inequalities with Scalar Curvature

Article
  • 35 Downloads

Abstract

We establish several inequalities for manifolds with positive scalar curvature and, more generally, for the scalar curvature bounded from below. In so far as geometry is concerned these inequalities appear as generalisations of the classical bounds on the distances between conjugates points in surfaces with positive sectional curvatures. The techniques of our proofs is based on the Schoen–Yau descent method via minimal hypersurfaces, while the overall logic of our arguments is inspired by and closely related to the torus splitting argument in Novikov’s proof of the topological invariance of the rational Pontryagin classes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm85.
    Almeida, Sebastiao: Minimal Hypersurfaces of a Positive Scalar Curvature. Math. Z. 190, 73–82 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. Alm86.
    Almgren Jr., F.J.: Optimal isoperimetric inequalities. Indiana Univ. Math. J. 35, 451–547 (1986)MathSciNetCrossRefMATHGoogle Scholar
  3. ACG07.
    Lars Andersson, Mingliang Cai and Gregory J. Galloway. Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré (1)9 (2008), 1–33Google Scholar
  4. Ati76.
    Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. Astérisque 32–3, 43–72 (1976)MathSciNetMATHGoogle Scholar
  5. Bam16.
    R. Bamler. A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature. Mathematical Research Letters Volume 23 (2016). Number 2, Pages 325 - 337Google Scholar
  6. BER17.
    Boris Botvinnik, Johannes Ebert, Oscar Randal-Williams. Infinite loop spaces and positive scalar curvature, Inventiones mathematicae (3)209 (2017), 749–835Google Scholar
  7. BH09.
    Brunnbauer, M., Hanke, B.: Large and small group homology. J. Topology 3, 463–486 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. BHMM15.
    Bourguignon, Jean-Pierre, Hijazi, Oussama, Milhorat, Jean-Louis: Andrei Moroianu and Sergiu Moroianu. A Spinorial Approach to Riemannian and Conformal Geometry, EMS Monographs in Mathematics (2015)Google Scholar
  9. BMN10.
    S Brendle, F.C. Marques, A. Neves. Deformations of the hemisphere that increase scalar curvature, arXiv:1004.3088[math.DG]
  10. DFW03.
    Dranishnikov, A.N.: Steven C. Ferry and Shmuel Weinberger. Large Riemannian manifolds which are flexible. Annals of Mathematics 157, 919–938 (2003)MathSciNetCrossRefGoogle Scholar
  11. Dra00.
    A. Dranishnikov. Asymptotic topology. Russian Math. Surveys (6)55 (2000), 71–116Google Scholar
  12. Dra06.
    Dranishnikov, A.N.: On hypereuclidean manifolds. Geom. Dedicata 117, 215–231 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. FS80.
    Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33, 199–211 (1980)MathSciNetCrossRefMATHGoogle Scholar
  14. GL80a.
    Gromov, M., Lawson, B.: Spin and Scalar Curvature in the Presence of a Fundamental Group I. Annals of Mathematics 111, 209–230 (1980)MathSciNetCrossRefMATHGoogle Scholar
  15. GL80b.
    Gromov, M., Lawson, H.B.: The classification. of simply connected. manifolds of positive scalar curvature. Annals of Mathematics 11, 423–434 (1980)MathSciNetCrossRefMATHGoogle Scholar
  16. GL83.
    Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Etudes Sci. Publ. Math. 58, 83–196 (1983)MathSciNetCrossRefMATHGoogle Scholar
  17. Gro83.
    Gromov, M.: Filling Riemannian manifolds. J. Differential Geom. 18(1), 1–147 (1983)MathSciNetCrossRefMATHGoogle Scholar
  18. Gro86.
    M. Gromov. Partial differential relations. Springer (1986)Google Scholar
  19. Gro96.
    M. Gromov. Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In: Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) ,volume 132 of Progr. Math., Birkhäuser, (1996), pp. 1–213Google Scholar
  20. Gro12.
    M. Gromov. Hilbert volume in metric spaces. Part 1. Cent. Eur. J. Math. (2)10(2012), 371–400Google Scholar
  21. Gro14a.
    M. Gromov, Dirac and Plateau billiards in domains with corners. Central European Journal of Mathematics (8)12 (2014), 1109–1156Google Scholar
  22. Gro14b.
    M. Gromov. M. Plateau-Stein manifolds, Cent. Eur. J. Math., 12(7), 923–951 (2014)Google Scholar
  23. Gro17.
    M. Gromov. 101 Questions, Problems and Conjectures around Scalar Curvature. http://www.ihes.fr/~gromov/PDF/101-problemsOct1-2017.pdf (2017)
  24. GS01.
    S. Goette, U. Semmelmann. Spin\(^c\) Structures and Scalar Curvature Estimates. Annals of Global Analysis and Geometry. (4)20 (2001) pp 301–324Google Scholar
  25. GS02.
    S. Goette and U. Semmelmann. Scalar curvature estimates for compact symmetric spaces. Differential Geom. Appl. (1)16 (2002), 65–78Google Scholar
  26. Han11.
    B. Hanke. Positive scalar curvature, K-area and essentialness, Global Differential Geometry pp 275–302, (2011)Google Scholar
  27. HS06.
    B. Hanke, T. Schick. Enlargeability and index theory. J. Differential Geom. (2)74 (2006), 293–320Google Scholar
  28. HPS15.
    Bernhard Hanke, Daniel Pape and Thomas Schick. Codimension two index obstructions to positive scalar curvature. Annales de l'institut Fourier (6)65 (2015), 2681–2710Google Scholar
  29. Hit74.
    Hitchin, N.: Harmonic spinors. Advances in Math. 14, 1–55 (1974)MathSciNetCrossRefMATHGoogle Scholar
  30. L9la8.
    M. Llarull. Sharp estimates and the Dirac operator. Mathematische AnnalenJanuary (1)310 (1998), 55–71Google Scholar
  31. LM84.
    H.B., Jr Lawson and M.-L. Michelsohn. Approximation by positive mean curvature immersions: frizzing. Inventiones mathematicae 77 (1984), 421–426Google Scholar
  32. Loh99.
    Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313, 385–407 (1999)MathSciNetCrossRefMATHGoogle Scholar
  33. Loh16.
    J. Lohkamp. The Higher Dimensional Positive Mass Theorem II, arXiv:1612.07505 (2016)
  34. MS12.
    Donovan McFeron, Gábor Székelyhidi. On the positive mass theorem for manifolds with corners, Communications in Mathematical Physics (2)313 (2012)Google Scholar
  35. Mia02.
    P. Miao. Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys., (6)6 (2002), 1163–1182Google Scholar
  36. Min88.
    M. Min-Oo. Scalar curvature rigidity of certain symmetric spaces. In Geometry, topology, and dynamics (Montreal, PQ, 1995), volume 15 of CRM Proc. Lecture Notes , pages 127–136Google Scholar
  37. Min89.
    Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989)MathSciNetCrossRefMATHGoogle Scholar
  38. Min02.
    M. Min-Oo. K-Area, mass and asymptotic geometry, http://ms.mcmaster.ca/minoo/mypapers/crm_es.pdf (2002)
  39. Sma93.
    N. Smale. Generic regularity of homologically area minimizing hyper surfaces in eight-dimensional mani- folds. Comm. Anal. Geom. (2)1 (1993), 217–228Google Scholar
  40. Ros07.
    J. Rosenberg. Manifolds of positive scalar curvature: a progress report. In: Surveys on Differential Geometry, vol. XI: Metric and Comparison Geometry, International Press (2007)Google Scholar
  41. Sch98.
    Thomas Schick. A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture. Topology (6)37 (1998)Google Scholar
  42. SY79a.
    Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds of non-negative scalar curvature. Ann. of Math. 110, 127–142 (1979)MathSciNetCrossRefMATHGoogle Scholar
  43. SY79b.
    Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28, 159–183 (1979)MathSciNetCrossRefMATHGoogle Scholar
  44. SY17.
    Richard Schoen, Shing-Tung Yau. Positive Scalar Curvature and Minimal Hypersurface Singularities, arXiv:1704.05490 (2017)
  45. Sto01.
    S. Stolz. Manifolds of a positive scalar curvature, in: T. Farrell etal. (eds.), Topology of high dimensional manifolds, ICTP Lect. Notes, vol. 9, 665–706. 1.1, Trieste (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  2. 2.Courant Institute of Mathematical Sciences - NYUNew YorkUSA

Personalised recommendations