Skip to main content
Log in

Fluctuations of Two Dimensional Coulomb Gases

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove a Central Limit Theorem for the linear statistics of two-dimensional Coulomb gases, with arbitrary inverse temperature and general confining potential, at the macroscopic and mesoscopic scales and possibly near the boundary of the support of the equilibrium measure. This can be stated in terms of convergence of the random electrostatic potential to a Gaussian Free Field.

Our result is the first to be valid at arbitrary temperature and at the mesoscopic scales, and we recover previous results of Ameur-Hendenmalm-Makarov and Rider-Virág concerning the determinantal case, with weaker assumptions near the boundary. We also prove moderate deviations upper bounds, or rigidity estimates, for the linear statistics and a convergence result for those corresponding to energy-minimizers.

The method relies on a change of variables, a perturbative expansion of the energy, and the comparison of partition functions deduced from our previous work. Near the boundary, we use recent quantitative stability estimates on the solutions to the obstacle problem obtained by Serra and the second author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J 159(1), 31–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and Ward identities. Ann. Probab. 43(3), 1157–1201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alastuey, A., Jancovici, B.: On the classical two-dimensional one-component Coulomb plasma. Journal de Physique 42(1), 1–12 (1981)

    Article  MathSciNet  Google Scholar 

  4. Ameur, Y., Ortega-Cerdà, J.: Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates. J. Funct. Anal 263, 1825–1861 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Bauerschmidt, P. Bourgade, M. Nikula, and H.-T. Yau.The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. arXiv:1609.08582, 2016

  6. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma. Communications in Mathematical Physics 356(1), 189–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Bourgade, L. Erdös, and H.-T. Yau. Bulk universality of general \(\beta \)-ensembles with non-convex potential. J. Math. Phys., 53(9): (2012), 095221, 19

  8. Bourgade, P., Erdös, L., Yau, H.-T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163(6), 1127–1190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Bekerman, A. Figalli, and A. Guionnet. Transport maps for Beta-matrix models and universality. arXiv preprint arXiv:1311.2315, 2013

  10. G. Borot and A. Guionnet. Asymptotic expansion of beta matrix models in the multi-cut regime. arXiv:1303.1045, 032013

  11. Borot, G., Guionnet, A.: Asymptotic expansion of \(\beta \) matrix models in the one-cut regime. Comm. Math. Phys. 317(2), 447–483 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Bekerman and A. Lodhia. Mesoscopic central limit theorem for general \(\beta \)-ensembles. arXiv:1605.05206, 2016

  13. F. Bekerman, T. Leblé, and S. Serfaty. CLT for fluctuations of \(\beta \)-ensembles with general potential. arXiv:1706.09663, 2017

  14. L. A. Caffarelli. The obstacle problem revisited. J.Fourier Anal. Appl., (4-5)4 (1998), 383–402

  15. S. Chatterjee. Rigidity of the three-dimensional hierarchical Coulomb gas. arXiv:1708.01965, 2017

  16. D. Chafai, A. Hardy, and M. Maida. Concentration for Coulomb gases and Coulomb transport inequalities. arXiv preprint arXiv:1610.00980, 2016

  17. Cunden, F.D., Maltsev, A., Mezzadri, F.: Fluctuations in the two-dimensional one-component plasma and associated fourth-order phase transition. Physical Review E 91(6), 060105 (2015)

    Article  Google Scholar 

  18. L.A. Caffarelli and N.M. Riviere. Smoothness and analyticity of free boundaries in variational inequalities. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, (2)3 (1976), 289–310

  19. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 1 Physical Origins and Classical Methods. Springer Science & Business Media, (2012)

  20. Feller, W.: An introduction to probability theory and itsapplications, vol. II. Second edition. John Wiley & Sons Inc, New York-London-Sydney (1971)

    Google Scholar 

  21. P.J. Forrester. Log-gases and random matrices, volume 34 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, (2010)

  22. O. Frostman. Potentiel d’équilibre et capacité desensembles avec quelques applications à la théorie des fonctions.Meddelanden Mat. Sem. Univ. Lund 3, (1935) 115 s

  23. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Mathematical Phys 6, 440–449 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Ghosh and Y. Peres. Rigidity and tolerance in point processes: Gaussian zeroes and Ginibre eigenvalues. arXiv:1211.2381, 2012

  25. D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. Springer, (2015)

  26. Jancovici, B., Lebowitz, J., Manificat, G.: Largecharge fluctuations in classical Coulomb systems. J. Statist. Phys 72(3–4), 773–7 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kinderlehrer, D.: Variational inequalities and free boundary problems. Bulletin of the American Mathematical Society 84(1), 7–26 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. B. Laughlin. Anomalous quantum hall effect: anincompressible quantum fluid with fractionally charged excitations. Physical Review Letters, (18)50(1983), 1395

  30. T. Leblé. Local microscopic behavior for 2D Coulomb gases. Probability Theory and Related Fields, (3-4) 169 (2017), 931–976

  31. G. Lambert, M. Ledoux, and C. Webb. Stein’s method for normal approximation of linear statistics of beta-ensembles. arXiv:1706.10251, 062017

  32. E. H. Lieb, N. Rougerie, and J. Yngvason. Rigidity of the laughlin liquid. arXiv preprint arXiv:1609.03818, 2016

  33. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of Log and Riesz gases. Inventiones mathematicae 210(3), 645–757 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leblé, T., Serfaty, S., Zeitouni, O.: Large deviations for the two-dimensional two-component plasma. Communications in Mathematical Physics 350(1), 301–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. L. Mehta. Random matrices. Third edition. Elsevier Academic Press, (2004)

  36. F. Nazarov and M. Sodin. Fluctuations in random complex zeroes: asymptotic normality revisited. arXiv preprint arXiv:1003.4251, 2010

  37. Petrache, M., Rota-Nodari, S.: Equidistribution of jellium energy for coulomb and riesz interactions. Constructive Approximation 47(1), 163–210 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. Journal of the Institute of Mathematics of Jussieu, FirstView 1–69, 5 (2015)

    MATH  Google Scholar 

  39. A. Petrosyan, H. Shahgholian, and N.N. Uraltseva. Regularity of free boundaries in obstacle-type problems, volume136. American Mathematical Society Providence (RI), (2012)

  40. E. Paquette and O. Zeitouni. The maximum of the cuefield. International Mathematics Research Notices, page rnx033, (2017)

  41. S. Rota-Nodari and S. Serfaty. Renormalized energy equidistribution and local charge balance in 2d coulomb systems. International Mathematics Research Notices, (2014)

  42. N. Rougerie and S. Serfaty. Higher-dimensional Coulomb gases and renormalized energy functionals. Communications on Pure and Applied Mathematics, (2015)

  43. Rougerie, N., Serfaty, S., Yngvason, J.: Quantum hallphases and plasma analogy in rotating trapped bose gases. Journal of Statistical Physics 154(1–2), 2–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. B. Rider and B. Virag. The noise in the circular law and the Gaussian free field. Int. Math. Res. Not, (2007), 2

  45. Rougerie, N., Yngvason, J.: Incompressibility estimates for the laughlin phase. Communications in Mathematical Physics 336(3), 1109–1140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Serfaty, S.: Coulomb Gases and Ginzburg-Landau Vortices. Eur. Math. Soc, Zurich Lectures in Advanced Mathematics (2015)

    Book  MATH  Google Scholar 

  47. S. Serfaty. Microscopic description of Log and Coulomb gases.arXiv preprint arXiv:1709.04089, (2017)

  48. Shcherbina, M.: Fluctuations of linear eigenvalue statistics of\(\beta \) matrix models in the multi-cut regime. J. Stat. Phys. 151(6), 1004–1034 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Shcherbina. Change of variables as a method to study general \(\beta \)-models: Bulk universality. J. Math. Phys., 55(4): (2014), 043504, 23

  50. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Related Fields 139(3–4), 521–541 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sari, R., Merlini, D.: On the \(\nu \)-dimension alone-component classical plasma: the thermodynamic limit problem revisited. J. Statist. Phys. 14(2), 91–100 (1976)

    Article  MathSciNet  Google Scholar 

  52. M. Sodin. Zeroes of gaussian analytic functions. arXiv:math/0410343, (2004)

  53. Sandier, E., Serfaty, S.: 1D Log gases and there normalized energy: Crystallization at vanishing temperature. Prob. Theor. Rel. Fields 162, 795–846 (2015)

    Article  MATH  Google Scholar 

  54. Sandier, E., Serfaty, S.: 2D Coulomb gases and there normalized energy. Annals Probab. 43, 2026–2083 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Serfaty and J. Serra. Quantitative stability of the free boundary in the obstacle problem. arXiv:1708.01490, (2017)

  56. E. B. Saff and V. Totik. Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenchaften 316, Springer-Verlag, Berlin, (1997)

  57. Stormer, H., Tsui, D., Gossard, A.: The fractional quantum hall effect. Reviews of Modern Physics 71(2), S298 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Serfaty.

Additional information

We use \(\frac{\beta}{2}\) instead of β in order to match the normalizations in the existing literature. The first sum in (1.2) is twice the physical one, but it is more convenient for our analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblé, T., Serfaty, S. Fluctuations of Two Dimensional Coulomb Gases. Geom. Funct. Anal. 28, 443–508 (2018). https://doi.org/10.1007/s00039-018-0443-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0443-1

Keywords and phrases

Mathematics Subject Classification

Navigation