Abstract
We conjecture that a countable group G admits a nonsingular Bernoulli action of type III1 if and only if the first L2-cohomology of G is nonzero. We prove this conjecture for all groups that admit at least one element of infinite order. We also give numerous explicit examples of type III1 Bernoulli actions of the groups \({\mathbb{Z}}\) and the free groups \({\mathbb{F}_n}\), with different degrees of ergodicity.
This is a preview of subscription content, access via your institution.
References
J. Aaronson. An introduction to infinite ergodic theory. Mathematical Surveys and Monographs, Vol. 50. American Mathematical Society, Providence (1997).
Anantharaman-Delaroche C.: On spectral characterizations of amenability. Israel J. Math., 137, 1–33 (2003)
B. Bekka, P.-A. Cherix, and A. Valette. Proper affine isometric actions of amenable groups. In: Novikov Conjectures, Index Theorems and Rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser. 227. Cambridge University Press, Cambridge (1995), pp. 1–4.
Bowen L., Nevo A: Pointwise ergodic theorems beyond amenable groups. Ergodic Theory Dynam. Systems, 33, 777–820 (2013)
Bowen L., Nevo A.: Amenable equivalence relations and the construction of ergodic averages for group actions. J. Anal. Math., 126, 359–388 (2015)
N.P. Brown and N. Ozawa. C*-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, Vol. 88. American Mathematical Society, Providence (2008).
Connes A.: Almost periodic states and factors of type III 1. J. Funct. Anal., 16, 415–445 (1974)
de Cornulier Y., Tessera R., Valette A: Isometric group actions on Hilbert spaces: growth of cocycles. Geom. Funct. Anal., 17, 770–792 (2007)
A. Danilenko and M. Lemańczyk. K-property for Maharam extensions of nonsingular Bernoulli and Markov shifts. Preprint. arXiv:1611.05173.
Douglas R.G., Nowak P.W.: Hilbert C*-modules and amenable actions. Studia Math., 199, 185–197 (2010)
Furman A.: Gromov’s measure equivalence and rigidity of higher rank lattices. Ann. of Math., 150, 1059–1081 (1999)
Hamachi T.: On a Bernoulli shift with non-identical factor measures. Ergodic Theory Dynam. Systems, 1, 273–284 (1981)
C. Houdayer, A. Marrakchi, and P. Verraedt. Strongly ergodic equivalence relations: spectral gap and type III invariants. Ergodic Theory Dynam. Systems, to appear. arXiv:1704.07326.
Houdayer C., Vaes S.: Type III factors with unique Cartan decomposition. J. Math. Pures Appl., (9) 100, 564–590 (2013)
Kakutani S.: On equivalence of infinite product measures. Ann. of Math., 49, 214–224 (1948)
Kesten H: Symmetric random walks on groups. Trans. Amer. Math. Soc., 92, 336–354 (1959)
Kosloff Z.: On a type III 1 Bernoulli shift. Ergodic Theory Dynam. Systems, 31, 1727–1743 (2011)
Kosloff Z: The zero-type property and mixing of Bernoulli shifts. Ergodic Theory Dynam. Systems. 33, 549–559 (2013)
Kosloff Z.: On the K property for Maharam extensions of Bernoulli shifts and a question of Krengel. Israel J. Math., 199, 485–506 (2014)
N. Monod. An invitation to bounded cohomology. In: International Congress of Mathematicians, Vol. II. Eur. Math. Soc., Zürich (2006), pp. 1183–1211.
N. Monod. On the bounded cohomology of semi-simple groups, S-arithmetic groups and products. J. Reine Angew. Math., 640 (2010), 167–202.
Ornstein D.S., Weiss B.: Ergodic theory of amenable group actions. Bull. Amer. Math. Soc. (N.S.), 2, 161–164 (1980)
Osin D.V.: L 2-Betti numbers and non-unitarizable groups without free subgroups. Int. Math. Res. Not. IMRN., 22, 4220–4231 (2009)
Peterson J., Thom A.: Group cocycles and the ring of affiliated operators. Invent. Math., 185, 561–592 (2011)
Schmidt K.: Asymptotically invariant sequences and an action of \({{\rm SL}(2,\mathbb{Z})}\) on the 2-sphere. Israel J. Math., 37, 193–208 (1980)
Schmidt K., Walters P.: Mildly mixing actions of locally compact groups. Proc. London Math. Soc., (3) 45, 506–518 (1982)
Silva C.E., Thieullen P.: A skew product entropy for nonsingular transformations. J. London Math. Soc., (2) 52, 497–516 (1995)
Strunkov S.P.: The normalizers and abelian subgroups of certain classes of groups. Izv. Akad. Nauk SSSR Ser. Mat., 31, 657–670 (1967)
M. Takesaki. Theory of operator algebras, II. Encyclopaedia of Mathematical Sciences, Vol. 125. Springer, Berlin (2003).
Zimmer R.J.: Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Funct. Anal., 27, 350–372 (1978)
Zimmer R.J.: On the von Neumann algebra of an ergodic group action. Proc. Amer. Math. Soc., 66, 289–293 (1977)
Zimmer R.J.: Hyperfinite factors and amenable ergodic actions. Invent. Math., 41, 23–31 (1977)
Author information
Authors and Affiliations
Corresponding author
Additional information
SV and JW are supported by European Research Council Consolidator Grant 614195 RIGIDITY, and by long term structural funding – Methusalem grant of the Flemish Government.
Rights and permissions
About this article
Cite this article
Vaes, S., Wahl, J. Bernoulli actions of type III1 and L2-cohomology. Geom. Funct. Anal. 28, 518–562 (2018). https://doi.org/10.1007/s00039-018-0438-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00039-018-0438-y