Geometric and Functional Analysis

, Volume 27, Issue 2, pp 289–372 | Cite as

Twisted Whittaker models for metaplectic groups



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. And03.
    Anderson J.: A polytope calculus for semisimple groups. Duke Math. J. 116, p. 567–588 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. ABBGM05.
    Arkhipov S., Bezrukavnikov R., Braverman A., Gaitsgory D., Mirković I.: Modules over the small quantum group and semi-infinite flag manifold. Transformation Groups 10(3-4), 279–362 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. AGV72.
    M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, SGA 4, vol. 1-3, vol. 269, 270, 305, Springer-Verlag, Lecture notes in math. (1972).Google Scholar
  4. BG08.
    Baumann P., Gaussent St.: On Mirković–Vilonen cycles and crystal combinatorics. Repr. Theory 12, p. 83–130 (2008)CrossRefMATHGoogle Scholar
  5. Bei.
    A. Beilinson, Constructible sheaves are holonomic, arXiv:1505.06768.
  6. BBD82.
    A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Asterisque 100 (1982).Google Scholar
  7. BD04.
    A. Beilinson, V. Drinfeld, Chiral algebras, Colloquium publications, vol. 51, AMS (2004).Google Scholar
  8. Ber.
    D. Beraldo, Loop group actions on categories and Whittaker invariants, arXiv:1310.5127.
  9. BFS98.
    R. Bezrukavnikov, M. Finkelberg, V. Schechtman, Factorizable Sheaves and Quantum Groups, Lecture Notes in Math., Vol. 1691 (1998).Google Scholar
  10. Bez.
    R. Bezrukavnikov, private communications.Google Scholar
  11. Bou68.
    N. Bourbaki, Groupes et algèbres de Lie, Chapitres 6 (Hermann, 1968).Google Scholar
  12. BD01.
    Brylinski J.-L., Deligne P.: Central extensions of reductive groups by K 2. Publ. Math. de l’IHES Vol. 94, p. 5–85 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. BFG06.
    Braverman A., Finkelberg M., Gaitsgory D.: Uhlenbeck Spaces via Affine Lie Algebras. The Unity of Mathematics Progress in Math. Vol. 244, 17–135 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. BFGM02.
    A. Braverman, M. Finkelberg, D. Gaitsgory, I. Mirković, Intersection cohomology of Drinfeld’s compactifications, Selecta Math., New ser. 8 (2002), p. 381–418, Erratum in: Selecta Math., New ser. 10 (2004), p. 429–430.Google Scholar
  15. BG01.
    Braverman A., Gaitsgory D.: Crystals via the affine grassmannian. Duke Math. J. vol. 107(3), p. 561–575 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. BG02.
    Braverman A., Gaitsgory D.: Geometric Eisenstein series. Inv. Math. 150, 287–384 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. Cam.
    J. Campbell, A resolution of singularities for Drinfeld’s compactification by stable maps, arXiv:1606.01518.
  18. Del77.
    P. Deligne, Seminaire de Géométrie Algébrique du Bois-Marie \({SGA4\frac{1}{2}}\), Cohomologie Etale, Lecture Notes in Math. 569 (1977).Google Scholar
  19. FK.
    R. Feger, Th. W. Kephart, LieART - A Mathematica Application for Lie Algebras and Representation Theory, arXiv:1206.6379.
  20. Fu11.
    L. Fu, Etale Cohomology Theory, Nankai Trackts in Math., vol. 13 (2011).Google Scholar
  21. FL10.
    Finkelberg M., Lysenko S.: Twisted geometric Satake equivalence. J. Inst. Math. Jussieu 9(4), p. 719–739 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. Fre07.
    E. Frenkel, Lectures on the Langlands Program and Conformal Field Theory, in: Frontiers in Number Theory, Physics, and Geometry II (2007), pp 387–533.Google Scholar
  23. FGV01.
    Frenkel E., Gaitsgory D., Vilonen K.: Whittaker patterns in the geometry of muduli spaces of bundles on curves. Ann. Math. 153, p. 699–748 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. Gai04.
    Gaitsgory D.: On a vanishing conjecture appearing in the geometric Langlands correspondence. Ann. Math. 160, 617–682 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. Gai08.
    Gaitsgory D.: Twisted Whittaker category and factorizable sheaves. Sel. Math., New ser. 13, p. 617–659 (2008)CrossRefMATHGoogle Scholar
  26. Gai.
    D. Gaitsgory, Contractibility of the space of rational maps, arXiv:1108.1741.
  27. Gai.
    D. Gaitsgory, Quantum Langlands Correspondence, arXiv:1601.05279.
  28. GL.
    D. Gaitsgory, S. Lysenko, Parameters and duality for the metaplectic geometric Langlands theory, arXiv:1608.00284.
  29. Jan87.
    J.C. Jantzen, Representations of Algebraic Groups, Academic Press (1987)Google Scholar
  30. Jan03.
    J.C. Jantzen, Representations of Algebraic Groups, 2nd ed., Amer. Math. Soc. (2003).Google Scholar
  31. Kas95.
    M. Kashiwara, On crystal bases, Canadian Math. Soc. Conference Proceedings, vol. 16 (1995).Google Scholar
  32. Kon.
    M. Kontsevich, Enumeration of rational curves via torus actions, in: The Moduli Space of Curves, Progress in Math., vol. 129, 335–368.Google Scholar
  33. Lys.
    S. Lysenko, Twisted geometric Satake equivalence: reductive case, arXiv:1411.6782.
  34. Lys.
    S. Lysenko, Geometric Eisenstein series: twisted setting, arXiv:1409.4071, to appear in Journal of EMS.
  35. Lys15.
    Lysenko S.: Twisted geometric Langlands correspondence for a torus. IMRN 18, 8680–8723 (2015)MathSciNetCrossRefMATHGoogle Scholar
  36. Ngo.
    B. C. Ngo, Preuve d’une conjecture de Frenkel-Gaitsgory-Kazhdan-Vilonen, arXiv:math/9801109.
  37. Ras.
    S. Raskin, Chiral principal series categories I: finite dimensional calculations, preprint available at
  38. Ras.
    S. Raskin, Chiral categories, preprint available at
  39. Sto.
    A. V. Stoyanovsky, Quantum Langlands duality and conformal field theory, arXiv:math/0610974.
  40. VO90.
    E. B. Vinberg, A. L. Onishchik, Lie groups and algebraic groups, 2nd edition, Springer Series in Soviet Mathematics (1990).Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Institut Élie Cartan Nancy (Mathématiques)Université de LorraineVandoeuvre-lés-Nancy CedexFrance

Personalised recommendations