Skip to main content
Log in

Convexity and Zariski decomposition structure

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

This is the first part of our work on Zariski decomposition structures, where we study Zariski decompositions using Legendre–Fenchel type transforms. In this way we define a Zariski decomposition for curve classes. This decomposition enables us to develop the theory of the volume function for curves defined by the second named author, yielding some fundamental positivity results for curve classes. For varieties with special structures, the Zariski decomposition for curve classes admits an interesting geometric interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan S., Milman V.: The concept of duality for measure projections of convex bodies. Journal of Functional Analysis 254(10), 2648–2666 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artstein-Avidan S., Milman V.: The concept of duality in convex analysis, and the characterization of the Legendre transform. Annals of Mathematics (2) 169(2), 661–674 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Artstein-Avidan and V. Milman. Hidden structures in the class of convex functions and a new duality transform. Journal of European Mathematical Society (JEMS), (4)13 (2011), 975–1004.

  4. Bauer T.: A simple proof for the existence of Zariski decompositions on surfaces. Journal of Algebraic Geometry 18(4), 789–793 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Bauer, F. Campana, T. Eckl, S. Kebekus, T. Peternell, S. Rams, T. Szemberg, and L. Wotzlaw. A Reduction Map for Nef Line Bundles. Complex Geometry (Göttingen, 2000). Springer, Berlin (2002), pp. 27–36.

  6. Boucksom S., Demailly J., Păun M., Peternell T.: The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. Journal of Algebraic Geometry 22(2), 201–248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boucksom S., Eyssidieux P., Guedj V., Zeriahi A.: Monge–Ampère equations in big cohomology classes. Acta Mathematica 205(2), 199–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boucksom S., Favre C., Jonsson M.: Differentiability of volumes of divisors and a problem of Teissier. Journal of Algebraic Geometry 2(18), 279–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Boucksom. Cônes positifs des variétés complexes compactes. Ph.D. thesis, Université Joseph-Fourier-Grenoble I (2002).

  10. S. Boucksom. Divisorial Zariski decompositions on compact complex manifolds. Annales scientifiques de l’École Normale Supérieure (4), (1)37 (2004), 45–76

  11. Campana F.: Connexité rationnelle des variétés de Fano. Annales scientifiques de l’École Normale Supérieure (4) 25(5), 539–545 (1992)

    MathSciNet  Google Scholar 

  12. S. D. Cutkosky. Teissier’s problem on inequalities of nef divisors over an arbitrary field. arXiv:1304.1218 (2013).

  13. Demailly J.: Champs magnétiques et inégalités de Morse pour la d′′-cohomologie. Annales de l’institut Fourier (Grenoble) 35(4), 189–229 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demailly J.: A numerical criterion for very ample line bundles. Journal of Differential Geometry 37(2), 323–374 (1993)

    MathSciNet  MATH  Google Scholar 

  15. J. Demailly. Complex analytic and differential geometry. online book. Institut Fourier, Grenoble. http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (2012).

  16. Dinh T., Nguyên V.: The mixed Hodge–Riemann bilinear relations for compact Kähler manifolds. Geometric and Functional Analysis 16(4), 838–849 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Demailly J., Păun M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Annals of Mathematics (2)159(3), 1247–1274 (2004)

    Article  MATH  Google Scholar 

  18. Ein L., Küchle O., Lazarsfeld R.: Local positivity of ample line bundles. Journal of Differential Geometry 42(2), 193–219 (1995)

    MathSciNet  MATH  Google Scholar 

  19. M. Fulger and B. Lehmann. Zariski decompositions of numerical cycle classes. Journal of Algebraic Geometry. arXiv:1310.0538 (2013).

  20. Fulger M., Lehmann B.: Morphisms and faces of pseudo-effective cones. Proceedings of London Mathematical Society 112(4), 651–676 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujino O., Sato H.: Smooth projective toric varieties whose nontrivial nef line bundles are big. Proceedings of the Japan Academy Series A Mathematical Sciences 85(7), 89–94 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fulger M.: cones of effective cycles on projective bundles over curves. Mathematische Zeitschrift 269(1), 449–459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fu J., Xiao J.: Relations between the Kählercone and the balanced cone of a Kähler manifold. Advances in Mathematics 263, 230–252 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Fu and J. Xiao. Teissier’s problem on proportionality of nef and big classes over a compact Kähler manifold. arXiv:1410.4878 (2014).

  25. D. Greb and M. Toma. Compact moduli spaces for slope-semistable sheaves. arXiv:1303.2480 (2013).

  26. Hwang J., Keum J.: Seshadri-exceptional foliations. Mathematische Annalen 325(2), 287–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huybrechts D.: Compact hyperkähler manifolds: basic results. Inventiones Mathematicae 135(1), 63–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. G. Khovanskiĭ. Newton polytopes (algebra and geometry). Theory of operators in function spaces (Russian) (Kuybyshev, 1988). Saratov. Gos. Univ., Kuĭbyshev. Filial, Kuybyshev (1989), pp. 202–221.

  29. A. Küronya and C. Maclean. Zariski decomposition of b-divisors. Mathematische Zeitschrift, (1–2)273 (2013), 427–436 (English).

  30. Kollár J., Miyaoka Y., Mori S.: Rational connectedness and boundedness of Fano manifolds. Journal of Differential Geometry 36(3), 765–779 (1992)

    MathSciNet  MATH  Google Scholar 

  31. J. Kollár. Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Vol. 32. Springer, Berlin (1996).

  32. R. Lazarsfeld. Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Vol. 48. Springer, Berlin. Classical setting: line bundles and linear series (2004).

  33. B. Lehmann. Geometric characterizations of big cycles. arXiv:1309.0880, see also “Volume-type functions for numerical cycle classes” on the author’s homepage (2013).

  34. Lazarsfeld R., Mustaţă M.: Convex bodies associated to linear series. Annales scientifiques de l’École normale supérieure (4)42(5), 783–835 (2009)

    MathSciNet  MATH  Google Scholar 

  35. B. Lehmann and J. Xiao. Positivity functions for curves on algebraic varieties (in preparation) (2015).

  36. B. Lehmann and J. Xiao. Correspondences between convex geometry and complex geometry. arXiv:1607.06161 (2016).

  37. J. J. Moreau. Fonctionnelles convexes, Séminaire Jean Leray (1966–1967), no. 2, pp. 1–108 (French).

  38. M. Mustaţă. The Non-nef Locus in Positive Characteristic, A Celebration of Algebraic Geometry, Clay Math. Proc., Vol. 18. Amer. Math. Soc., Providence (2013), pp. 535–551.

  39. M. Nagata. On rational surfaces. II. Memoirs of the College of Science, University of Kyoto Series A, Mathematics, 33 (1960/1961), 271–293.

  40. N. Nakayama. Zariski-decomposition and Abundance, MSJ Memoirs, Vol. 14. Mathematical Society of Japan, Tokyo (2004).

  41. D. Popovici. Sufficient bigness criterion for differences of two nef classes. Mathematische Annalen. arXiv:1405.2518 (2014).

  42. D. Popovici. Volume and self-intersection of differences of two nef classes. arXiv:1505.03457 (2015).

  43. A. Rubinov and Z. Dzalilov. Abstract convexity of positively homogeneous functions, Journal of Statistics and Management Systems, (1–3)5 (2002), 1–20. Generalized convexity, generalized monotonicity, optimality conditions and duality in scaler and vector optimization.

  44. R. T. Rockafellar. Convex Analysis, Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970).

  45. A. Rubinov. Abstract Convexity and Global Optimization, Nonconvex Optimization and its Applications, Vol. 44. Kluwer Academic Publishers, Dordrecht (2000).

  46. I. Singer. Abstract Convex Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997). With a foreword by A. M. Rubinov, A Wiley-Interscience Publication.

  47. Siu Y.T.: An effective Matsusaka big theorem. Annales de l’Institut Fourier (Grenoble) 43(5), 1387–1405 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Takagi S.: Fujita’s approximation theorem in positive characteristics. Journal of Mathematics of Kyoto University 47(1), 179–202 (2007)

    MathSciNet  MATH  Google Scholar 

  49. B. Teissier. Du théoreme de lindex de Hodge aux inégalités isopérimétriques. Comptes rendus de l’Académie des Sciences AB, (4)288 (1979), A287–A289.

  50. B. Teissier. Bonnesen-type Inequalities in Algebraic Geometry. I. Introduction to the Problem, Seminar on Differential Geometry, Ann. of Math. Stud., Vol. 102. Princeton University Press, Princeton (1982), pp. 85–105.

  51. V. Tosatti. The Calabi–Yau Theorem and Kähler currents. arXiv:1505.02124 (2015).

  52. Trapani S.: Numerical criteria for the positivity of the difference of ample divisors. Mathematische Zeitschrift 219(3), 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. D. Witt Nyström. Duality between the pseudoeffective and the movable cone on a projective manifold, with an appendix by S. Boucksom. arXiv:1602.03778 (2016).

  54. J. Xiao. Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds. Annales de l’Institut Fourier (Grenoble). arXiv:1308.2878 (2013).

  55. J. Xiao. Movable intersection and bigness criterion. arXiv:1405.1582 (2014).

  56. J. Xiao. Characterizing volume via cone duality. arXiv:1502.06450 (2015).

  57. Zariski O.: The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface. Annals of Mathematics (2) 76, 560–615 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Lehmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, B., Xiao, J. Convexity and Zariski decomposition structure. Geom. Funct. Anal. 26, 1135–1189 (2016). https://doi.org/10.1007/s00039-016-0384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0384-5

Navigation