Abstract
We show that if a Fano manifold M is K-stable with respect to special degenerations equivariant under a compact group of automorphisms, then M admits a Kähler–Einstein metric. This is a strengthening of the solution of the Yau–Tian–Donaldson conjecture for Fano manifolds by Chen–Donaldson–Sun (Int Math Res Not (8):2119–2125, 2014), and can be used to obtain new examples of Kähler–Einstein manifolds. We also give analogous results for twisted Kähler–Einstein metrics and Kahler–Ricci solitons.
Similar content being viewed by others
References
Alexeev V.: Complete moduli in the presence of semiabelian group action. Annals of Mathematics (2) 155(3), 611–708 (2002)
Alexeev V., Brion M.: Stable reductive varieties, I. Affine varieties. Inventiones Mathematicae 157(2), 227–274 (2004)
Alexeev V., Brion M.: Stable reductive varieties, II. Projective case. Advances in Mathematics 184(2), 380–408 (2004)
Alexeev V., Katzarkov L.: On K-stability of reductive varieties. Geometric and Functional Analysis 15(2), 297–310 (2005)
M. Anderson. Convergence and rigidity of manifolds under Ricci curvature bounds. Inventiones Mathematicae, 97 (1990), 429–445.
Aubin T.: Réduction de cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité. Journal of functional Analysis 57(2), 143–153 (1984)
S. Bando and T. Mabuchi. Uniqueness of Einstein Kähler metrics modulo connected group actions. In: Algebraic geometry, Sendai. Advanced Studies in Pure Mathematics, Vol. 10 (1985), pp. 11–40.
Bedford E., Taylor B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Inventiones Mathematicae 37(1), 1–44 (1976)
R.J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. arXiv:1111.7158.
R.J. Berman and D.W. Nystrom. Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons. arXiv:1401.8264.
Berndtsson B.: A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Inventiones Mathematicae 200(1), 149–200 (2015)
Berndtsson B.: Curvature of vector bundles associated to holomorphic fibrations. Annals of Mathematics (2) 169(2), 531–560 (2009)
Błocki Z., Kołodziej S.: On regularization of plurisubharmonic functions on manifolds. Proceedings of the American Mathematical Society 135(7), 2089–2093 (2007)
Cheeger J., Colding T.: On the structure of spaces with Ricci curvature bounded below. I. Journal of Differential Geometry 46(3), 406–480 (1997)
Cheeger J., Colding T., Tian G.: On the singularities of spaces with bounded Ricci curvature. Geometric and Functional Analysis 12(5), 873–914 (2002)
J. Cheeger and A. Naber. Regularity of Einstein manifolds and the codimension 4 conjecture. Annals of Mathematics (2), (3)182 (2015), 1093–1165.
X. Chen, S. Donaldson, and S. Sun. Kähler–Einstein metrics and stability. International Mathematics Research Notices, (8) (2014), 2119–2125.
Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. Journal of the American Mathematical Society 28(1), 183–197 (2015)
Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. II: Limits with cone angle less than \({2\pi}\) . Journal of the American Mathematical Society 28(1), 199–234 (2015)
Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \({2\pi}\) and completion of the main proof. Journal of the American Mathematical Society 28(1), 235–278 (2015)
Colding T.H.: Ricci curvature and volume convergence. Annals of Mathematics (2) 145(3), 477–501 (1997)
J.-P. Demailly. Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mémoires de la Société Mathématique France (N. S.), 19 (1985), 1–125.
Demailly J.-P.: Regularization of closed positive currents and intersection theory. The Journal of Algebraic Geometry 1(3), 361–409 (1992)
R. Dervan. Uniform stability of twisted constant scalar curvature Kähler metrics. arXiv:1412.0648.
S.K. Donaldson. Stability, birational transformations and the Kähler–Einstein problem. Surveys in differential geometry. Vol. XVII, 203–228, Surv. Differ. Geom., 17, Int. Press, Boston, MA, 2012.
S.K. Donaldson. Scalar curvature and stability of toric varieties. Journal of Differential Geometry, 62 (2002), 289–349.
Donaldson S., Sun S.: Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Mathematica 213(1), 63–106 (2014)
Ding W.Y., Tian G.: Kähler–Einstein metrics and the generalized Futaki invariant. Inventiones Mathematicae 110(2), 315–335 (1992)
Harvey R., Polking J.: Extending analytic objects. Communications on Pure and Applied Mathematics, 28(6), 701–727 (1975)
W. He. F-functional and geodesic stability. arXiv:1208.1020
N. Ilten and H. Süss. K-stability for varieties with torus action of complexity one. arXiv:1507.04442
W. Jian, F. Wang, and X. Zhu. Bergman kernels for a sequence of almost Kähler–Ricci solitons. arXiv:1401.6542
M. Lejmi and G. Székelyhidi. The J-flow and stability. Advances in Mathematics, 274 (2015), 404–431.
Li C.: Greatest lower bounds on Ricci curvature for toric Fano manifolds. Advances in Mathematics 226(6), 4921–4932 (2011)
D. Luna. Slices étales. In: Sur les groupes algébriques. Bull. Soc. Math. France, Paris, Mémoire, Vol. 33. Soc. Math. France, Paris (1973), pp. 81–105.
Y. Matsushima. Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne. Nagoya Mathematical Journal, 11 (1957), 145–150
D.H. Phong, J. Song, and J. Sturm. Degenerations of Kähler–Ricci solitons on Fano manifolds. Universitatis Iagellonicae Acta Mathematica, 52 (2015), 29–43.
F. Podestà and A. Spiro. Kähler–Ricci solitons on homogeneous toric bundles. Journal Fur Die Reine Und Angewandte Mathematik, 642 (2010), 109–127.
Shiffman B., Zelditch S.: Distribution of zeros of random and quantum chaotic sections of positive line bundles. Communications in Mathematical Physics 200(3), 661–683 (1999)
J. Song and X. Wang. The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality. Geometry Topology, (1)20 (2016), 49–102.
H. Süss. Kähler–Einstein metrics on symmetric Fano t-varieties. Advances in Mathematics, 246 (2013), 100–113.
H. Süss. Fano threefolds with 2-torus action: a picture book. Documenta Mathematica, 19 (2014), 905–940.
G. Székelyhidi. Greatest lower bounds on the Ricci curvature of Fano manifolds. Compositio Mathematica, 147 (2011), 319–331.
G. Székelyhidi. A remark on conical Kähler–Einstein metrics. Mathematical Research Letters, (3) 20 (2013), 581–590.
G. Székelyhidi. The partial \(C^0\)-estimate along the continuity method. Journal of the American Mathematical Society, (2) 29 (2016), 537–560.
Tian G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Inventiones Mathematicae 101(1), 101–172 (1990)
G. Tian. Kähler–Einstein metrics with positive scalar curvature. Inventiones Mathematicae, 137 (1997), 1–37.
G. Tian and Z. Zhang. Degeneration of Kähler–Ricci solitons. International Mathematics Research Notices, (5) (2012), 957–985.
Tian G., Zhu X.: Uniqueness of Kähler–Ricci solitons. Acta Mathematica 184(2), 271–305 (2000)
F. Wang and X. Zhu. On the structure of spaces with Bakry–Émery Ricci curvature bounded below. arXiv:1304.4490
X.-J. Wang and X. Zhu. Kähler–Ricci solitons on toric manifolds with positive first Chern class. Advances in Mathematics, 188 (2004), 87–103.
Wei G., Wylie W.: Comparison geometry for the Bakry–Emery Ricci tensor. Journal of Differential Geometry 83(2), 377–405 (2009)
S.-T. Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Communications on Pure and Applied Mathematics, 31 (1978), 339–411.
S.-T. Yau. Open problems in geometry. Proceedings of Symposia in Pure Mathematics, 54 (1993), 1–28.
L. Yi. A Bando–Mabuchi Uniqueness Theorem. arXiv:1301.2847.
Z. Zhang. Degeneration of shrinking Ricci solitons. International Mathematics Research Notices, (21) (2010), 4137–4158.
Zhu X.: Kähler–Ricci soliton typed equations on compact complex manifolds with C 1(M) > 0. The Journal of Geometric Analysis 10(4), 759–774 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Datar, V., Székelyhidi, G. Kähler–Einstein metrics along the smooth continuity method. Geom. Funct. Anal. 26, 975–1010 (2016). https://doi.org/10.1007/s00039-016-0377-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00039-016-0377-4