Advertisement

Geometric and Functional Analysis

, Volume 26, Issue 2, pp 607–679 | Cite as

Volume distortion in homotopy groups

  • Fedor Manin
Article

Abstract

Given a finite metric CW complex X and an element \({\alpha \in \pi_n(X)}\), what are the properties of a geometrically optimal representative of \({\alpha}\)? We study the optimal volume of \({k\alpha}\) as a function of k. Asymptotically, this function, whose inverse, for reasons of tradition, we call the volume distortion, turns out to be an invariant with respect to the rational homotopy of X. We provide a number of examples and techniques for studying this invariant, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their distortion functions are linear.

Keywords

Universal Cover Homotopy Group Hyperbolic Group Distortion Function Euler Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AB98.
    O. Attie and J. Block. Poincaré duality for \({L^p}\) cohomology and characteristic classes. Tech. Report 98-48, DIMACS, 1998. Available at http://dimacs.rutgers.edu/TechnicalReports/TechReports/1998/98-48.ps.gz.
  2. ABW92.
    Attie O., Block J., Weinberger S.: Characteristic classes and distortion of diffeomorphisms. Journal of the American Mathematical Society 5(4), 919–921 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. AWP99.
    Alonso J.M., Wang X., Pride S.J.: Higher-dimensional isoperimetric (or Dehn) functions of groups. Journal of Group Theory 2, 81–112 (1999)MathSciNetzbMATHGoogle Scholar
  4. BB97.
    Bestvina M., Brady N.: Morse theory and finiteness properties of groups. Inventiones mathematicae 129(3), 445–470 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. BBFS09.
    Brady N., Bridson M.R., Forester M., Shankar K.: Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra. Geometry and Topology 13(1), 141–187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. BG84.
    Brown K.S., Geoghegan R.: An infinite-dimensional torsion-free \({\mathbf{FP}_\infty}\) group. Inventiones mathematicae. 77(2), 367–381 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. BRS76.
    S. Buoncristiano, C.P. Rourke and B.J. Sanderson A Geometric Approach to Homology Theory, Vol. 18. Cambridge University Press, Cambridge (1976).Google Scholar
  8. BW92.
    Block J., Weinberger S.: Aperiodic tilings, positive scalar curvature, and amenability of spaces. Journal of the American Mathematical Society. 5(4), 907–918 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. VHM14.
    É.C. de Verdière, A. Hubard, and A. de Mesmay. Discrete systolic inequalities and decompositions of triangulated surfaces. Proceedings of the thirtieth annual symposium on Computational geometry, ACM, 2014, p. 335.Google Scholar
  10. CG86.
    Cheeger J., Gromov M.: \({L_2}\)-cohomology and group cohomology. Topology. 25(2), 189–215 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. CLRS01.
    Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. et al.: Introduction to Algorithms. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  12. DGS13.
    DeTurck D., GluckH. Storm P.: Lipschitz minimality of Hopf fibrations and Hopf vector fields. Algebraic & Geometric Topology. 13(3), 1368–1412 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. EPCHLT92.
    D. Epstein, M. Paterson, J. Cannon, D. Holt, S. Levy and W.P. Thurston. Word Processing in Groups. Jones and Bartlett, Burlington (1992).Google Scholar
  14. FHT12.
    Y. Félix, S. Halperin and J.-C. Thomas. Rational homotopy theory. Graduate Texts in Mathematics, Vol. 205. Springer, Berlin (2012).Google Scholar
  15. Ger92.
    S Gersten. Bounded cohomology and combings of groups. Preprint (1992). Available at http://www.math.utah.edu/~sg/Papers/bdd.pdf.
  16. Ger96.
    S Gersten. A cohomological characterization of hyperbolic groups. preprint (1996). Available at http://www.math.utah.edu/~sg/Papers/ch.pdf.
  17. GJ09.
    Goerss P.G., Jardine J.F.: Simplicial Homotopy Theory. Birkhäuser, Basel (2009)CrossRefzbMATHGoogle Scholar
  18. GM81.
    Griffiths P.A., Morgan J.W.: Rational homotopy Theory and Differential Forms. Birkhäuser, Basel (1981)zbMATHGoogle Scholar
  19. Gro78.
    Gromov M.: Homotopical effects of dilatation. Journal of Differential Geometry. 13(3), 303–310 (1978)MathSciNetzbMATHGoogle Scholar
  20. Gro91.
    Gromov M.: Kähler hyperbolicity and \({L_2}\)-Hodge theory.. Journal of Differential Geometry. 33(1), 263–292 (1991)MathSciNetzbMATHGoogle Scholar
  21. Gro96.
    Gromov M.: Geometric group theory, vol. 2: Asymptotic invariants of infinite groups. Bull. Amer. Math. Soc. 33, 0273–0979 (1996)Google Scholar
  22. Gro98.
    M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces, Vol. 152. Birkhäuser, Basel (1998).Google Scholar
  23. Gro99.
    M. Gromov. Quantitative homotopy theory, Invited Talks on the Occasion of the 250th Anniversary of Princeton University (H. Rossi, ed.), Prospects in Mathematics. (1999), pp. 45–49.Google Scholar
  24. Gro09.
    C. Groft. Generalized Dehn functions I. (2009). arXiv preprint arXiv:0901.2303.
  25. Gut08a.
    L. Guth. Directional isoperimetric inequalities and rational homotopy invariants. (2008). arXiv preprint arXiv:0802.3549.
  26. Gut08b.
    L. Guth. Isoperimetric inequalities and rational homotopy invariants. (2008). arXiv preprint arXiv:0802.3550.
  27. Gut13.
    Guth L.: Contraction of areas vs.. topology of mappings. Geometric and Functional Analysis. 23(6), 1804–1902 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Hat01.
    Hatcher A.: Algebraic topology. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  29. Hat15.
    A. Hatcher. Algebraic topology, ch. 5: Spectral Sequences, 2015. Available at https://www.math.cornell.edu/~hatcher/AT/ATch5.pdf.
  30. Kat07.
    M. Katz. Systolic geometry and topology. Mathematical surveys and monographs, Vol. 137. American Mathematical Society, Providence (2007).Google Scholar
  31. KK13.
    B. Kloeckner and G. Kuperberg. The Little Prince and Weil’s isoperimetric problem. (2013). arXiv preprint arXiv:1303.3115.
  32. Man15.
    F. Manin. Asymptotic invariants of homotopy groups. Ph.D. thesis, University of Chicago, June (2015).Google Scholar
  33. Mes72.
    Meskin S.: Nonresidually finite one-relator groups. Trans. Amer. Math. Soc. 164, 105–114 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Min00.
    Mineyev I.: Higher dimensional isoperimetric functions in hyperbolic groups. Mathematische Zeitschrift. 233(2), 327–345 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. NŠ10.
    Nowak P.W., Špakula J.: Controlled coarse homology and isoperimetric inequalities. Journal of Topology. 3(2), 443–462 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Spa81.
    Spanier E.H.: Algebraic Topology. Springer, Berlin (1981)CrossRefzbMATHGoogle Scholar
  37. Wal65.
    Wall C.T.C.: Finiteness conditions for CW-complexes. The Annals of Mathematics. 81(1), 56–69 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Wen14.
    Wen H.: Lipschitz minimality of the multiplication maps of unit complex, quaternion and octonion numbers. Algebraic & Geometric Topology. 14(1), 407–420 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Whi84.
    White B.: Mappings that minimize area in their homotopy classes. Journal of Differential Geometry. 20(2), 433–446 (1984)MathSciNetzbMATHGoogle Scholar
  40. You11.
    Young R.: Homological and homotopical higher-order filling functions. Groups, Geometry, and Dynamics. 5(3), 683–690 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations