Skip to main content
Log in

Finiteness Principles for Smooth Selection

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove finiteness principles for \({C^m{({\mathbb{R}^n},{\mathbb{R}^D)}}}\) and \({C^{m-1,1}(\mathbb{R}^n,\mathbb{R}^D)}\) selections. In particular, we provide a proof for a conjecture of Brudnyi-Shvartsman (1994) on Lipschitz selections for the case when the domain is \({X=\mathbb{R}^n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bierstone E., Milman P.D.: \({\mathscr C^m}\)-norms on finite sets and \({\mathscr C^m}\) extension criteria. Duke Mathematical Journal 137(1), 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bierstone E., Milman P.D., Pawłucki W.: Differentiable functions defined in closed sets. A problem of Whitney. Inventiones mathematicae 151(2), 329–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bierstone E., Milman P.D., Pawłucki W.: Higher-order tangents and Fefferman’s paper on Whitney’s extension problem. Annals of Mathematics (2) 164(1), 361–370 (2006)

    Article  MATH  Google Scholar 

  4. Brudnyi Y., Shvartsman P.: A linear extension operator for a space of smooth functions defined on a closed subset in \({\mathbb{R}^n}\). Doklady Akademii Nauk SSSR 280(2), 268–272 (1985)

    MathSciNet  Google Scholar 

  5. Y. Brudnyi and P. Shvartsman. The traces of differentiable functions to subsets of \({\mathbb{R}^n}\). Linear and Complex Analysis. Problem Book 3. Part II, Lecture Notes in Mathematics, vol. 1574, Springer, Berlin (1994), pp. 279–281.

  6. Y. Brudnyi and P. Shvartsman. Generalizations of Whitney’s extension theorem. International Mathematics Research Notices (3) 129 (1994) (electronic).

  7. Brudnyi Y., Shvartsman P.: The Whitney problem of existence of a linear extension operator. Journal of Geometric Analysis 7(4), 515–574 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brudnyi Y., Shvartsman P.: The trace of jet space \({J^k\Lambda^\omega}\) to an arbitrary closed subset of \({\mathbb{R}^n}\). Transactions of the American Mathematical Society 350(4), 1519–1553 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Brudnyi and P. Shvartsman. Whitney’s extension problem for multivariate \({C^{1,\omega}}\)-functions. Transactions of the American Mathematical Society (6)353 (2001), 2487–2512 (electronic).

  10. Fefferman C.: A sharp form of Whitney’s extension theorem. Annals of Mathematics (2) 161(1), 509–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fefferman C.: A generalized sharp Whitney theorem for jets. Revista Matematica Iberoamericana 21(2), 577–688 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fefferman C.: Whitney’s extension problem for \({C^m}\). Annals of Mathematics (2) 164(1), 313–359 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fefferman C.: \({C^m}\) extension by linear operators. Annals of Mathematics (2) 166(3), 779–835 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fefferman C.: Whitney’s extension problems and interpolation of data. Bulletin of the American Mathematical Society (N.S.) 46(2), 207–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fefferman C., Klartag B.: Fitting a \({C^m}\)-smooth function to data. I. Annals of Mathematics (2) 169(1), 315–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fefferman C., Klartag B.: Fitting a \({C^m}\)-smooth function to data. II. Revista Matematica Iberoamericana 25(1), 49–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fefferman C., Luli G.K.: The Brenner–Hochster–Kollár and Whitney problems for vector-valued functions and jets. Revista Matematica Iberoamericana 30(3), 875–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Fefferman, A. Israel and G.K. Luli. Interpolation of data by smooth non-negative functions (to appear).

  19. G. Glaeser. Étude de quelques algèbres tayloriennes. Journal d’Analyse Mathematique , 6 (1958), 1–124 (erratum, insert to (2)6 (1958))

  20. Gruyer E. L.: Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space. Geometric and Functional Analysis 19(4), 1101–1118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.T. Rockafellar. Convex analysis. In: Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997) (reprint of the 1970 original, Princeton Paperbacks).

  22. P. Shvartsman. The traces of functions of two variables satisfying to the Zygmund condition. In: Studies in the Theory of Functions of Several Real Variables, (Russian). Yaroslavl State University, Yaroslavl (1982), pp. 145–168.

  23. Shvartsman P.: Lipschitz sections of set-valued mappings and traces of functions from the Zygmund class on an arbitrary compactum. Doklady Akademii Nauk SSSR 276(3), 559–562 (1984)

    MathSciNet  Google Scholar 

  24. P. Shvartsman. Lipschitz sections of multivalued mappings. In: Studies in the Theory of Functions of Several Real Variables (Russian). Yaroslavl State University, Yaroslavl (1986), pp. 121–132, 149.

  25. P. Shvartsman. Traces of functions of Zygmund class. (Russian) Sibirsk. Mat. Zh. (5) (1987), 203–215 (English translation in Siberian Mathematical Journal 28 (1987), 853–863).

  26. P. Shvartsman. K-functionals of weighted Lipschitz spaces and Lipschitz selections of multivalued mappings. In: Interpolation Spaces and Related Topics (Haifa, 1990), pp. 245–268, Israel Mathematical Conference Proceedings, Vol. 5. BarIlan University, Ramat Gan (1992).

  27. Shvartsman P.: On Lipschitz selections of affine-set valued mappings. Geometric and Functional Analysis 11(4), 840–868 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shvartsman P.: Lipschitz selections of set-valued mappings and Helly’s theorem. Journal of Geometric Analysis 12(2), 289–324 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shvartsman P.: Barycentric selectors and a Steiner-type point of a convex body in a Banach space. Journal of Functional Analysis 210(1), 1–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shvartsman P.: The Whitney extension problem and Lipschitz selections of set-valued mappings in jet-spaces. Transactions of the American Mathematical Society 360(10), 5529–5550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wells J.C.: Differentiable functions on Banach spaces with Lipschitz derivatives. Journal of Differential Geometry 8, 135–152 (1973)

    MathSciNet  MATH  Google Scholar 

  32. Whitney H.: Analytic extensions of differentiable functions defined in closed sets. Transactions of the American Mathematical Society 36(1), 63–89 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zobin N.: Whitney’s problem on extendability of functions and an intrinsic metric. Advances in Mathematics 133(1), 96–132 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zobin N.: Extension of smooth functions from finitely connected planar domains. Journal of Geometric Analysis 9(3), 489–509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garving K. Luli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fefferman, C., Israel, A. & Luli, G.K. Finiteness Principles for Smooth Selection. Geom. Funct. Anal. 26, 422–477 (2016). https://doi.org/10.1007/s00039-016-0366-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0366-7

Keywords

Navigation