Polynomial cubic differentials and convex polygons in the projective plane

Abstract

We construct and study a natural homeomorphism between the moduli space of polynomial cubic differentials of degree d on the complex plane and the space of projective equivalence classes of oriented convex polygons with d + 3 vertices. This map arises from the construction of a complete hyperbolic affine sphere with prescribed Pick differential, and can be seen as an analogue of the Labourie–Loftin parameterization of convex \({{\mathbb{RP}}^2}\) structures on a compact surface by the bundle of holomorphic cubic differentials Teichmüller space.

This is a preview of subscription content, access via your institution.

References

  1. AS72

    M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972).

  2. BB04

    O. Biquard and P. Boalch. Wild non-abelian Hodge theory on curves. Compositio Mathematica, (1)140 (2006), 179–204.

  3. Ber09

    Bernig A.: Hilbert geometry of polytopes. Archiv der Mathematik (Basel) 92(4), 314–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. BF42

    Ch. Blanc and F. Fiala. Le type d’une surface et sa courbure totale. Commentarii Mathematici Helvetici, 14 (1942), 230–233.

  5. BH13

    Benoist Y., Hulin D.: Cubic differentials and finite volume convex projective surfaces. Geometry and Topology 17(1), 595–620 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. BH14

    Y. Benoist and D. Hulin. Cubic differentials and hyperbolic convex sets. Journal of Differential Geometry, (1)98 (2014), 1–19.

  7. BK53

    H. Busemann and P. Kelly. Projective Geometry and Projective Metrics. Academic Press Inc, New York (1953).

  8. Bla23

    W. Blaschke. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, bearbeitet von K. Reidemeister. Erste und zweite Auflage. Springer, Berlin, (1923).

  9. BMS12

    F. Bonsante, G. Mondello, and J.-M. Schlenker. A cyclic extension of the earthquake flow II (2012) (preprint). arXiv:1208.1738

  10. BMS13

    F. Bonsante, G. Mondello, and J.-M. Schlenker. A cyclic extension of the earthquake flow I. Geometry and Topology, (1)17(2013), 157–234.

  11. Boa14

    Boalch P.: Geometry and braiding of Stokes data; fission and wild character varieties. Annals of Mathematics (2) 179(1), 301–365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bra91

    S.B. Bradlow. Special metrics and stability for holomorphic bundles with global sections. Journal of Differential Geometry, (1)33 (1991), 169–213.

  13. Cal72

    E. Calabi. Complete affine hyperspheres. I. In: Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971). Academic Press, London (1972), pp. 19–38.

  14. CV11

    Colbois B., Verovic P.: Hilbert domains that admit a quasi-isometric embedding into Euclidean space. Advances in Geometry 11(3), 465–470 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. CVV11

    B. Colbois, C. Vernicos, and P. Verovic. Hilbert geometry for convex polygonal domains. Journal of Geometry, (1–2)100 (2011), 37–64.

  16. CY75

    S.Y. Cheng and S.-T. Yau. Differential equations on Riemannian manifolds and their geometric applications. Communications on Pure and Applied Mathematics, (3)28 (1975), 333–354.

  17. CY86

    Cheng S.Y., Yau S.-T.: Complete affine hypersurfaces. I. The completeness of affine metrics. Communications on Pure and Applied Mathematics 39(6), 839–866 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. dF04

    T. de Fernex. On planar Cremona maps of prime order. Nagoya Mathematical Journal, 174 (2004), 1–28.

  19. dlH93

    P. de la Harpe. On Hilbert’s metric for simplices. In: Geometric Group Theory, Vol. 1 (Sussex, 1991). London Mathematical Society Lecture Note Series, Vol. 181. Cambridge University Press, Cambridge (1993), pp. 97–119.

  20. Dun12

    Dunajski M.: Abelian vortices from sinh-Gordon and Tzitzeica equations. Physics Letters B 710(1), 236–239 (2012)

    Article  MathSciNet  Google Scholar 

  21. FG07

    V.V. Fock and A.B. Goncharov. Moduli spaces of convex projective structures on surfaces. Advances in Mathematics, (1)208 (2007), 249–273.

  22. Fin65

    R. Finn. On a class of conformal metrics, with application to differential geometry in the large. Commentarii Mathematici Helvetici, 40 (1965), 1–30.

  23. FK05

    T. Foertsch and A. Karlsson. Hilbert metrics and Minkowski norms. Journal of Geometry, (1–2)83 (2005), 22–31.

  24. Gig81

    Gigena S.: On a conjecture by E Calabi.. Geometriae Dedicata 11(4), 387–396 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. GL50

    V.L. Ginburg and L.D. Landau. Zh. Eksp. Teor. Fiz., 20 (1950), 1064. English translation in Collected Papers of L.D. Landau, pp. 546–568, Pergamon Press (1965).

  26. GP94

    O. García-Prada. A direct existence proof for the vortex equations over a compact Riemann surface. Bulletin of the London Mathematical Society, (1)26 (1994), 88–96.

  27. GT83

    D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, Vol. 224, 2nd edn. Springer, Berlin (1983).

  28. Han96

    Z.-C. Han. Remarks on the geometric behavior of harmonic maps between surfaces. In: Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994). A K Peters, Wellesley (1996), pp. 57–66.

  29. Har02

    P. Hartman. Ordinary Differential Equations. Classics in Applied Mathematics, Vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002)

  30. HTTW95

    Z.-C. Han, L.-F. Tam, A. Treibergs, and T. Wan. Harmonic maps from the complex plane into surfaces with nonpositive curvature. Communications in Analysis and Geometry, (1–2)3 (1995), 85–114.

  31. Hub57

    Huber A.: On subharmonic functions and differential geometry in the large. Commentarii Mathematici Helvetici 32, 13–72 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jos07

    J. Jost. Partial Differential Equations. Graduate Texts in Mathematics, Vol. 214, 2nd edn. Springer, New York (2007).

  33. JT80

    A. Jaffe and C. Taubes. Vortices and Monopoles. Progress in Physics, Vol. 2. Birkhäuser, Boston (1980). Structure of static gauge theories.

  34. Kay67

    Kay D.: The ptolemaic inequality in Hilbert geometries.. Pacific Journal of Mathematics 21, 293–301 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lab07

    F. Labourie. Flat projective structures on surfaces and cubic holomorphic differentials. Pure and Applied Mathematics Quarterly (4, part 1)3 (2007), 1057–1099.

  36. Li90

    A.M. Li. Calabi conjecture on hyperbolic affine hyperspheres. Mathematische Zeitschrift, (3)203 (1990), 483–491.

  37. Li92

    Li A.M.: Calabi conjecture on hyperbolic affine hyperspheres. II.. Mathematische Annalen 293(3), 485–493 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. LLS04

    A.-M. Li, H. Li, and U. Simon. Centroaffine Bernstein problems. Differential Geometry and its Applications, (3)20 (2004), 331–356.

  39. Lof01

    J. Loftin. Affine spheres and convex \({{\mathbb{RP}}^n}\)-manifolds. American Journal of Mathematics, (2)123 (2001), 255–274.

  40. Lof04

    J. Loftin. The compactification of the moduli space of convex \({{\mathbb{RP}}^2}\) surfaces. I. Journal of Differential Geometry, (2)68 (2004), 223–276.

  41. Lof07

    Loftin J.: Flat metrics, cubic differentials and limits of projective holonomies. Geometriae Dedicata 128, 97–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lof10

    J. Loftin. Survey on affine spheres. In: Handbook of Geometric Analysis, No. 2. Advanced Lectures in Mathematics, Vol. 13. International Press, Somerville (2010), pp. 161–191.

  43. Lof15

    J. Loftin. Convex \({{\mathbb{RP}}^2}\) structures and cubic differentials under neck separation (2015) (preprint). arXiv:1506.03895

  44. LSZ93

    A.M. Li, U. Simon, and G.S. Zhao. Global Affine Differential Geometry of Hypersurfaces. de Gruyter Expositions in Mathematics, Vol. 11. Walter de Gruyter & Co, Berlin (1993).

  45. Min92

    Minsky Y.: Harmonic maps, length, and energy in Teichmüller space. Journal of Differential Geometry 35(1), 151–217 (1992)

    MathSciNet  MATH  Google Scholar 

  46. NS94

    K. Nomizu and T. Sasaki. Affine Differential Geometry. Cambridge Tracts in Mathematics, Vol. 111. Cambridge University Press, Cambridge (1994).

  47. Omo67

    H. Omori. Isometric immersions of Riemannian manifolds. Journal of the Mathematical Society of Japan, 19 (1967), 205–214.

  48. Oss86

    R. Osserman. A Survey of Minimal Surfaces, 2nd edn. Dover Publications Inc, New York (1986).

  49. OST10

    V. Ovsienko, R. Schwartz, and S. Tabachnikov. The pentagram map: a discrete integrable system. Communications in Mathematical Physics, (2)299 (2010), 409–446.

  50. Pic17

    Pick G.: Über affine Geometrie iv: Differentialinvarianten der Flächen gegenüber affinen Transformationen. Leipziger Berichte 69, 107–136 (1917)

    Google Scholar 

  51. PZ02

    A.D. Polyanin and V.F. Zaitsev. Handbook of Linear Partial Differential Equations for Engineers and Scientists. CRC Press, Boca Raton (2002).

  52. Sas80

    T. Sasaki. Hyperbolic affine hyperspheres. Nagoya Mathematical Journal, 77 (1980), 107–123.

  53. Sch92

    R. Schwartz. The pentagram map. Experimental Mathematics, (1)1 (1992), 71–81.

  54. Sim90

    Simpson C.: Harmonic bundles on noncompact curves.. Journal of the American Mathematical Society 3(3), 713–770 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  55. Str84

    K. Strebel. Quadratic Differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 5. Springer, Berlin (1984).

  56. SW93

    U. Simon and C.P. Wang. Local theory of affine 2-spheres. In: Differential Geometry: Riemannian Geometry (Los Angeles, CA, 1990). Proceedings of Symposia in Pure Mathematics, Vol. 54. American Mathematical Society, Providence (1993), pp. 585–598.

  57. TW02

    Trudinger N.S., Wang X.-J.: Affine complete locally convex hypersurfaces. Inventiones Mathematicae 150(1), 45–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tzi08

    G. Tzitzéica. Sur une nouvelle classe de surfaces. Rendiconti del Circolo Matematico di Palermo, (1)25 (1908), 180–187.

  59. WA94

    T.Y. Wan and T.K. Au. Parabolic constant mean curvature spacelike surfaces. Proceedings of the American Mathematical Society, (2)120 (1994), 559–564.

  60. Wan91

    C.P. Wang. Some examples of complete hyperbolic affine 2-spheres in R 3. In: Global Differential Geometry and Global Analysis (Berlin, 1990). Lecture Notes in Mathematics, Vol. 1481. Springer, Berlin, (1991), pp. 271–280.

  61. Wan92

    Wan T.Y.: Constant mean curvature surface, harmonic maps, and universal Teichmüller space. Journal of Differential Geometry 35(3), 643–657 (1992)

    MathSciNet  MATH  Google Scholar 

  62. Wit07

    E. Witten. From superconductors and four-manifolds to weak interactions. Bulletin of the American Mathematical Society (N.S.), (3)44 (2007), 361–391 (electronic).

  63. Wit08

    E. Witten. Gauge theory and wild ramification. Analysis and Applications (Singapore), (4)6 (2008), 429–501.

  64. Wol91

    M. Wolf. High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space. Topology, (4)30 (1991), 517–540.

  65. Yau75

    Yau S.T.: Harmonic functions on complete Riemannian manifolds.. Communications on Pure and Applied Mathematics 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Dumas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dumas, D., Wolf, M. Polynomial cubic differentials and convex polygons in the projective plane. Geom. Funct. Anal. 25, 1734–1798 (2015). https://doi.org/10.1007/s00039-015-0344-5

Download citation

Keywords

  • Modulus Space
  • Riemann Surface
  • Convex Polygon
  • Convex Domain
  • Projective Transformation