Skip to main content
Log in

Towards large genus asymptotics of intersection numbers on moduli spaces of curves

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We explicitly compute the diverging factor in the large genus asymptotics of the Weil–Petersson volumes of the moduli spaces of n-pointed complex algebraic curves. Modulo a universal multiplicative constant we prove the existence of a complete asymptotic expansion of the Weil–Petersson volumes in the inverse powers of the genus with coefficients that are polynomials in n. This is done by analyzing various recursions for the more general intersection numbers of tautological classes, whose large genus asymptotic behavior is also extensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello E., Cornalba M.: Combinatorial and algebro-geometric cohomology classes on the Moduli Spaces of Curves. Journal of Algebraic Geometry 5, 705–709 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Do N., Norbury P.: Weil–Petersson volumes and cone surfaces. Geometriae Dedicata 141, 93–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. H.M. Edwards. Riemann’s Zeta Function. Academic Press, New York (1974).

  4. Eynard B.,(2011) Recursion between Mumford volumes of moduli spaces. Annales Henri Poincaré, 12(8):1431–1447

    Article  MathSciNet  Google Scholar 

  5. B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. Communications in Number Theory and Physics, 1:2 (2007), 347–452.

  6. Grushevsky S.: An explicit upper bound for Weil–Petersson volumes of the moduli spaces of punctured Riemann surfaces. Mathematische Annalen 321(1), 1–13 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Harris and I. Morrison. Moduli of curves. In: Graduate Texts in Mathematics, Vol. 187. Springer, New York (1998).

  8. Kaufmann R., Manin Y., Zagier D.: Higher Weil–Petersson volumes of moduli spaces of stable n-pointed curves. Communications in Mathematical Physics 181, 736–787 (1996)

    Article  MathSciNet  Google Scholar 

  9. M.E. Kazarian. (2006). (Private communication).

  10. Kazarian M.E.: Lando S.K. An algebro-geometric proof of Witten’s conjecture. Journal of the American Mathematical Society 20, 1079–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kontsevich M.: Intersection on the moduli space of curves and the matrix Airy function. Communications in Mathematical Physics 147, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu K., Xu H.: Recursion formulae of higher Weil–Petersson volumes. International Mathematics Research Notices IMRN 5, 835–859 (2009)

    MATH  Google Scholar 

  13. Liu K., Xu H.: Mirzakharni’s recursion formula is equivalent to the Witten–Kontsevich theorem. Asterisque 328, 223–235 (2009)

    Google Scholar 

  14. Yu. Manin and P. Zograf. Invertible cohomological field theories and Weil–Petersson volumes. Annales de l’institut Fourier, 50:2 (2000), 519–535.

  15. McShane G.: Simple geodesics and a series constant over Teichmüller space. Inventiones mathematicae 132, 607–632 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Mirzakhani. Weil–Petersson volumes and intersection theory on the moduli space of curves. Journal of the American Mathematical Society, 20:1 (2007), 1–23.

  17. Mirzakhani M.: Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces. Inventiones mathematicae 167, 179–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirzakhani M.: Growth of Weil–Petersson volumes and random hyperbolic surfaces of large genus. Journal of Differential Geometry 94, 267–300 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Mulase Y., Safnuk P.: Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy. Indian Journal of Mathematics 50, 189–228 (2008)

    MathSciNet  MATH  Google Scholar 

  20. A. Okounkov and R. Pandharipande. Gromov–Witten theory, Hurwitz numbers, and matrix models. Proceedings of Symposia in Pure Mathematics, 80.1 (2009), 325–414.

  21. Penner R.: Weil–Petersson volumes. Journal of Differential Geometry 35, 559–608 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Schumacher G., Trapani S.: Estimates of Weil–Petersson volumes via effective divisors. Communications in Mathematical Physics 222(1), 1–7 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Witten E.: Two-dimensional gravity and intersection theory on moduli spaces. Surveys in Differential Geometry 1, 243–269 (1991)

    Article  Google Scholar 

  24. S. Wolpert. On the homology of the moduli of stable curves. Annals of Mathematics, 118:2 (1983), 491–523

  25. P. Zograf. On the large genus asymptotics of Weil–Petersson volumes (2008). (arXiv:0812.0544).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Zograf.

Additional information

The work of MM was partially supported by NSF and Simons grants. The work of PZ was supported by the Government of the Russian Federation megagrant 11.G34.31.0026, by JSC “Gazprom Neft”, and by the RFBR grant 14-01-00373-A. PZ also gratefully acknowledges the hospitality and support of MPIM (Bonn), QGM (Aarhus) and SCGP (Stony Brook).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzakhani, M., Zograf, P. Towards large genus asymptotics of intersection numbers on moduli spaces of curves. Geom. Funct. Anal. 25, 1258–1289 (2015). https://doi.org/10.1007/s00039-015-0336-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0336-5

Keywords

Navigation