Abstract
We explicitly compute the diverging factor in the large genus asymptotics of the Weil–Petersson volumes of the moduli spaces of n-pointed complex algebraic curves. Modulo a universal multiplicative constant we prove the existence of a complete asymptotic expansion of the Weil–Petersson volumes in the inverse powers of the genus with coefficients that are polynomials in n. This is done by analyzing various recursions for the more general intersection numbers of tautological classes, whose large genus asymptotic behavior is also extensively studied.
Similar content being viewed by others
References
Arbarello E., Cornalba M.: Combinatorial and algebro-geometric cohomology classes on the Moduli Spaces of Curves. Journal of Algebraic Geometry 5, 705–709 (1996)
Do N., Norbury P.: Weil–Petersson volumes and cone surfaces. Geometriae Dedicata 141, 93–107 (2009)
H.M. Edwards. Riemann’s Zeta Function. Academic Press, New York (1974).
Eynard B.,(2011) Recursion between Mumford volumes of moduli spaces. Annales Henri Poincaré, 12(8):1431–1447
B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. Communications in Number Theory and Physics, 1:2 (2007), 347–452.
Grushevsky S.: An explicit upper bound for Weil–Petersson volumes of the moduli spaces of punctured Riemann surfaces. Mathematische Annalen 321(1), 1–13 (2001)
J. Harris and I. Morrison. Moduli of curves. In: Graduate Texts in Mathematics, Vol. 187. Springer, New York (1998).
Kaufmann R., Manin Y., Zagier D.: Higher Weil–Petersson volumes of moduli spaces of stable n-pointed curves. Communications in Mathematical Physics 181, 736–787 (1996)
M.E. Kazarian. (2006). (Private communication).
Kazarian M.E.: Lando S.K. An algebro-geometric proof of Witten’s conjecture. Journal of the American Mathematical Society 20, 1079–1089 (2007)
Kontsevich M.: Intersection on the moduli space of curves and the matrix Airy function. Communications in Mathematical Physics 147, 1–23 (1992)
Liu K., Xu H.: Recursion formulae of higher Weil–Petersson volumes. International Mathematics Research Notices IMRN 5, 835–859 (2009)
Liu K., Xu H.: Mirzakharni’s recursion formula is equivalent to the Witten–Kontsevich theorem. Asterisque 328, 223–235 (2009)
Yu. Manin and P. Zograf. Invertible cohomological field theories and Weil–Petersson volumes. Annales de l’institut Fourier, 50:2 (2000), 519–535.
McShane G.: Simple geodesics and a series constant over Teichmüller space. Inventiones mathematicae 132, 607–632 (1998)
M. Mirzakhani. Weil–Petersson volumes and intersection theory on the moduli space of curves. Journal of the American Mathematical Society, 20:1 (2007), 1–23.
Mirzakhani M.: Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces. Inventiones mathematicae 167, 179–222 (2007)
Mirzakhani M.: Growth of Weil–Petersson volumes and random hyperbolic surfaces of large genus. Journal of Differential Geometry 94, 267–300 (2013)
Mulase Y., Safnuk P.: Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy. Indian Journal of Mathematics 50, 189–228 (2008)
A. Okounkov and R. Pandharipande. Gromov–Witten theory, Hurwitz numbers, and matrix models. Proceedings of Symposia in Pure Mathematics, 80.1 (2009), 325–414.
Penner R.: Weil–Petersson volumes. Journal of Differential Geometry 35, 559–608 (1992)
Schumacher G., Trapani S.: Estimates of Weil–Petersson volumes via effective divisors. Communications in Mathematical Physics 222(1), 1–7 (2001)
Witten E.: Two-dimensional gravity and intersection theory on moduli spaces. Surveys in Differential Geometry 1, 243–269 (1991)
S. Wolpert. On the homology of the moduli of stable curves. Annals of Mathematics, 118:2 (1983), 491–523
P. Zograf. On the large genus asymptotics of Weil–Petersson volumes (2008). (arXiv:0812.0544).
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of MM was partially supported by NSF and Simons grants. The work of PZ was supported by the Government of the Russian Federation megagrant 11.G34.31.0026, by JSC “Gazprom Neft”, and by the RFBR grant 14-01-00373-A. PZ also gratefully acknowledges the hospitality and support of MPIM (Bonn), QGM (Aarhus) and SCGP (Stony Brook).
Rights and permissions
About this article
Cite this article
Mirzakhani, M., Zograf, P. Towards large genus asymptotics of intersection numbers on moduli spaces of curves. Geom. Funct. Anal. 25, 1258–1289 (2015). https://doi.org/10.1007/s00039-015-0336-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00039-015-0336-5