Skip to main content

Rational points on cubic hypersurfaces over \({\mathbb{F}_{q}(t)}\)

Abstract

The Hasse principle and weak approximation is established for non-singular cubic hypersurfaces X over the function field \({\mathbb{F}_q(t)}\), provided that char \({(\mathbb{F}_{q})>{3}}\) and X has dimension at least 6.

This is a preview of subscription content, access via your institution.

References

  1. Browning T.D., Heath-Brown D.R.: Rational points on quartic hypersurfaces. Journal für die reine und angewandte Mathematik 629, 37–88 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Browning T.D., Vishe P.: Cubic hypersurfaces and a version of the circle method for number fields. Duke Mathematical Journal, 163, 1825–1883 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  3. T.D. Browning and P. Vishe. Rational curves on smooth cubic hypersurfaces over finite fields (2015, submitted). arXiv:1502.05028.

  4. J.-L. Colliot-Thélène. Points rationnels sur les fibrations. In: Higher Dimensional Varieties and Rational Points (Budapest, 2001). Springer, Berlin (2003), pp. 171–221.

  5. P. Colmez and J.-P. Serre. Correspondance Grothendieck–Serre. Documents Math., Vol. 2. SMF, Paris (2001).

  6. Deligne P.: La conjecture de Weil. I. Publications Mathématiques de IHÉS, 43, 273–307 (1974)

    MathSciNet  Article  Google Scholar 

  7. Deligne P.: La conjecture de Weil. II. Publications Mathématiques de IHÉS, 52, 137–252 (1980)

    MATH  MathSciNet  Article  Google Scholar 

  8. Duke W., Friedlander J.B., Iwaniec H.: Bounds for automorphic L-functions. Inventiones Mathematicae, 112, 1–8 (1993)

    MATH  MathSciNet  Article  Google Scholar 

  9. É. Fouvry, E. Kowalski, and P. Michel. Algebraic twists of modular forms and Hecke orbits. Geometric and Functional Analysis, 25 (2015), 580–657 (arXiv:1207.0617).

  10. I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Basel (1994).

  11. S.R. Ghorpade and G. Lachaud. Number of solutions of equations over finite fields and a conjecture of Lang and Weil. In: Number Theory and Discrete Mathematics. Birkhäuser, Basel (2002), pp. 269–291.

  12. M. Greenberg. Lectures on Forms in Many Variables. Benjamin, New York (1969).

  13. A. Grothendieck. Formule de Lefschetz et rationalité des fonctions L. Séminaire Bourbaki (1964–1966), Exp. No. 279. Soc. Math. France, Paris (1995), pp. 41–55.

  14. B. Hassett and Y. Tschinkel. Weak approximation for hypersurfaces of low degree. Algebraic geometry 2005, Proc. Symp. Pure Math., Vol. 80. AMS, Providence (2009), pp. 937–955.

  15. Heath-Brown D.R.: Cubic forms in ten variables. Proceedings of London Mathematical Society 47, 225–257 (1983)

    MATH  MathSciNet  Article  Google Scholar 

  16. Hooley C.: On Waring’s problem. Acta Mathematica 157, 49–97 (1986)

    MATH  MathSciNet  Article  Google Scholar 

  17. Hooley C.: On nonary cubic forms. Journal für die reine und angewandte Mathematik, 386, 32–98 (1988)

    MATH  MathSciNet  Google Scholar 

  18. Hooley C.: On nonary cubic forms. III. Journal für die reine und angewandte Mathematik, 456, 53–63 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Hooley C.: On octonary cubic forms. Proceedings of London Mathematical Society, 109, 241–281 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  20. Hsu C.N.: Large sieve inequality for rational function fields. Journal of Number Theory, 58, 267–287 (1996)

    MATH  MathSciNet  Article  Google Scholar 

  21. Y. Hu. Weak approximation over function fields of curves over large or finite fields. Mathematische Annalen 348 (2010), 357–377.

  22. J.-I. Igusa. An introduction to the theory of local zeta functions. AMS/IP Studies in Advanced Mathematics, Vol. 14. AMS, Providence (2000).

  23. B. Kahn. Fonctions zêta et L de variétés et de motifs (2013). http://webusers.imj-prg.fr/~bruno.kahn/ZetaL

  24. N. Katz. Gauss sums, Kloosterman sums and monodromy groups. Princeton University Press, Princeton (1988).

  25. N. Katz. L-Functions and monodromy: four lectures on Weil II. Advances in Mathematics, 160 (2001), 81–132.

  26. R.M. Kubota. Waring’s problem for \({{\mathbb{F}_{q}[t]}}\). Dissertationes Mathematicae 117 (1974).

  27. S.A. Lee. Birch’s theorem in function fields (2011, submitted) (arXiv:1109.4953).

  28. S.A. Lee. On the applications of the circle method to function fields, and related topics. Ph.D. thesis, University of Bristol (2013).

  29. Y.-R. Liu and T.D. Wooley. Waring’s problem in function fields. Journal für die reine und angewandte Mathematik 638 (2010), 1–67.

  30. D. Ramakrishnan and R.J. Valenza. Fourier Analysis on Number Fields. Springer, Berlin (1999).

  31. H.L. Schmid and O. Teichmüller. Ein neuer Beweis für die Funktional gleichung der L-Reihen. Abhandlungen Aus Dem Mathematischen Seminar Der Hansischen Universität 15 (1943), 85–96.

  32. J.-P. Serre. Facteurs locaux des fonctions zêta des variétés algébriques. Séminaire Delange–Pisot–Poitou. Théorie des nombres, Oeuvres, Vol. II (1969–1970), pp. 581–592.

  33. J.-P. Serre. Lectures on the Mordell–Weil Theorem, 3rd edn. Vieweg (1997).

  34. A.N. Skorobogatov. On the fibration method for proving the Hasse principle and weak approximation. Séminaire de Théorie des Nombres, Paris (1988–1989), Progr. Math., Vol. 91. Birkhäuser Boston, Boston (1990), pp. 205–219.

  35. P. Swinnerton-Dyer. The solubility of diagonal cubic surfaces. Annales Scientifiques de l’École Normale Supérieure 34 (2001), 891–912.

  36. T. Terasoma. Monodromy weight filtration is independent of ℓ (1998, preprint). (arXiv:math/9802051).

  37. E.C. Titchmarsh. In: D.R. Heath-Brown, The Theory of the Riemann Zeta-Function, 2nd edn. Oxford University Press, New York (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vishe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Browning, T.D., Vishe, P. Rational points on cubic hypersurfaces over \({\mathbb{F}_{q}(t)}\) . Geom. Funct. Anal. 25, 671–732 (2015). https://doi.org/10.1007/s00039-015-0328-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0328-5

Mathematics Subject Classification

  • 11G35 (11P55, 11T55, 14G05)