Abstract
We prove there exists a density one subset \({\mathfrak{D} \subset \mathbb{N}}\) such that each \({n {\in} {\mathfrak{D}}}\) is the denominator of a finite continued fraction with partial quotients bounded by 5.
Similar content being viewed by others
References
Jean Bourgain, Alex Gamburd, Peter Sarnak: Generalization of Selberg’s 3/16 Theorem and Affine Sieve. Acta Mathematica, 207(2), 255–290 (2011)
Jean Bourgain, Alex Kontorovich: On Zaremba’s Conjecture. Annals. of Math., 180, 1–60 (2014)
Richard T. Bumby: Hausdorff Dimension of Sets Arising in Number Theory. Lecture Notes in Mathematics, 1135, 1–8 (1985)
Jing-Run Chen: On the Representation of A Larger Even Integer as The Sum of A Prime and The Product of At Most Two Primes. SCIENCE CHINA Mathematics, 16(2), 157–176 (1973)
JB Friedlander and Henryk Iwaniec. Opera De Cribro. American Mathematical Society, Providence, R.I., c2010.
D.A. Frolenkov and I.D. Kan. A Reinforcement of The Bourgain-Kontorovich’s Theorem by Elementary Methods II, 2013.
I.J. Good. The Fractional Dimensional Theory of Continued Fractions. Mathematical Proceedings of the Cambridge Philosophical Society, 37:199–228, 7 1941.
Doug Hensley. The Distribution of Badly Approximable Numbers and Continuants with Bounded Digits. Théorie des nombres, pages 371–385, 1989.
Doug Hensley: Continued Fraction Cantor Sets, Hausdorff Dimension, and Functional Analysis. Journal of Number Theory, 40(3), 336–358 (1992)
Douglas Hensley: A Polynomial Time Algorithm for The Hausdorff Dimension of Continued Fraction Cantor Sets. J. Number Theory, 58(1), 9–45 (1996)
Oliver Jenkinson. On The Density of Hausdorff Dimensions of Bounded Type Continued Fraction Sets: The Texan Conjecture. Stochastics and Dynamics, 04(01):63–76, 2004.
Oliver Jenkinson and Mark Pollicott. Computing The Dimension of Dynamically Defined Sets: E 2 and Bounded Continued Fractions. Ergodic Theory and Dynamical Systems, 21:1429–1445, 10 2001.
S.V. Konyagin. Estimates for Trigonometric Sums over Subgroups and for Gauss Sums. In IV International conference “Modern problems of number theory and its applications”. Current Problems. Part III. Proceedings of the conference held in Tula, Russia, September 10–15, 2001., pages 86–114. Moscow: Moskovskij Gosudarstvennyj Universtitet im. M. V. Lomonosova, Mekhaniko-Matematicheskij Fakul’tet, 2002.
Alex Kontorovich: From Apollonius to Zaremba: Local-Global Phenomena in Thin Orbits. Bull. Amer. Math. Soc. (N.S.), 50(2), 187–228 (2013)
Korobov N.M.: Exponential Sums and Their Applications. Kluwer Academic, Dordrecht, Netherlands (1992)
Steven P. Lalley: Renewal Theorems in Symbolic Dynamics, with Applications to Geodesic Flows, Noneuclidean Tessellations and Their Fractal Limits. Acta Mathematica, 163(1), 1–55 (1989)
Matthews C.R., Vaserstein L.N., Weisfeiler B.: Congruence Properties of Zariski-dense Subgroup. I. Proc. London Math. Soc, 3, 514–532 (1984)
Harnald Niederreiter: Quasi Monte-Carlo Methods and Pseudo-Random Numbers. Bull. Amer. Math. Soc., 84(6), 957–1041 (1978)
Robin G.: Grandes Valeurs de La Fonction Somme des Diviseurs et Hypothèse de Riemann. J. Math. Pures Appl., 9(63), 187–213 (1982)
S.K. Zaremba. La Méthode des ”Bons Treillis” Pour le Calcul des Intégrales Multiples. (French) Applications of Number Theory to Numerical Analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971). Academic Press, New York, 1972.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, S. An Improvement to Zaremba’s Conjecture. Geom. Funct. Anal. 25, 860–914 (2015). https://doi.org/10.1007/s00039-015-0327-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00039-015-0327-6