Advertisement

Geometric and Functional Analysis

, Volume 24, Issue 1, pp 245–268 | Cite as

Homotopy Groups of Spheres and Lipschitz Homotopy Groups of Heisenberg Groups

  • Piotr Hajłasz
  • Armin Schikorra
  • Jeremy T. Tyson
Article

Abstract

We provide a sufficient condition for the nontriviality of the Lipschitz homotopy group of the Heisenberg group, \({\pi_m^{\rm Lip}(\mathbb{H}_n)}\), in terms of properties of the classical homotopy group of the sphere, \({\pi_m(\mathbb{S}^n)}\). As an application we provide a new simplified proof of the fact that \({\pi_n^{\rm Lip}(\mathbb{H}_n)\neq \{0\}, n=1,2,\ldots}\), and we prove a new result that \({\pi_{4n-1}^{\rm Lip}(\mathbb{H}_{2n})\neq \{0\}}\) for n = 1,2,… The last result is based on a new generalization of the Hopf invariant. We also prove that Lipschitz mappings are not dense in the Sobolev space \({W^{1,p}(\mathcal{M},\mathbb{H}_{2n})}\) when \({\dim \mathcal{M} \geq 4n}\) and 4n−1 ≤  p < 4n.

Mathematics Subject Classification (2000)

Primary 53C17 Secondary 46E35 55Q40 55Q25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BF09.
    Balogh Z., Fässler K.S.: Rectifiability and Lipschitz extensions into the Heisenberg group. Mathematische Zeitschrift, 263, 673–683 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Bat93.
    S.M. Bates. Toward a precise smoothness hypothesis in Sard’s theorem. Proceedings of the American Mathematical Society, 117 (1993), 279–283Google Scholar
  3. Bet91.
    Bethuel F.: The approximation problem for Sobolev maps between two manifolds. Acta Mathematica, 167, 153–206 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  4. BZ88.
    F. Bethuel and X.M. Zheng. Density of smooth functions between two manifolds in Sobolev spaces. Journal of Functional Analysis, 80 (1988), 60–75Google Scholar
  5. BT82.
    R. Bott and L.-W. Tu. Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, Vol. 82. Springer, New York (1982)Google Scholar
  6. CL01.
    L. Capogna and F.-H. Lin. Legendrian energy minimizers. I. Heisenberg group target. Calculus of Variations and Partial Differential Equations, 12 (2001), 145–171Google Scholar
  7. DHLT11.
    N. DeJarnette, P. Hajłasz, A. Lukyanenko and J. Tyson. On the lack of density of Lipschitz mappings in Sobolev spaces with Heisenberg target (2011). arXiv:1109.4641, Preprint
  8. EES05.
    T. Ekholm, J. Etnyre and M. Sullivan. Non-isotopic Legendrian submanifolds in \({\mathbb{R}^{2n+1}}\). Journal of Differential Geometry, 71 (2005), 85–128Google Scholar
  9. EG92.
    L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)Google Scholar
  10. Fed69.
    H. Federer. Geometric Measure Theory, Grundlehren der mathematischen Wissenschaften, Vol. 153. Springer, New York (1969)Google Scholar
  11. FHT01.
    Y. Félix, S. Halperin and J.-C. Thomas. Rational Homotopy Theory, Graduate Texts in Mathematics, Vol. 205. Springer, New York (2001)Google Scholar
  12. Haj09a.
    P. Hajłasz. Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces. Mathematische Annalen, 343 (2009), 801–823Google Scholar
  13. Haj09b.
    P. Hajłasz. Sobolev mappings between manifolds and metric spaces. In: Sobolev Spaces In Mathematics. I, Int. Math. Ser. (N.Y.), Vol. 8. Springer, New York (2009), pp. 185–222Google Scholar
  14. Haj07.
    P. Hajłasz. Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target. Geometric and Functional Analysis, 17 (2007), 435–467Google Scholar
  15. Haj94.
    P. Hajłasz. Approximation of Sobolev mappings. Nonlinear Analysis, 22 (1994), 1579–1591Google Scholar
  16. HK00.
    P. Hajłasz and P. Koskela. Sobolev met Poincaré. Memoirs American Mathematical Society, 688 (2000), 1–101Google Scholar
  17. HS13.
    P. Hajłasz and A. Schikorra. Lipschitz homotopy and density of Lipschitz mappings in Sobolev spaces. Annales Academiæ Scientiarum Fennicæ Mathematica (2013).Google Scholar
  18. HL03.
    F. Hang and F. Lin. Topology of Sobolev mappings II. Acta Mathematica, 191 (2003), 55–107Google Scholar
  19. Hop35.
    H. Hopf. Über die Abbildungen von Sphären auf Sphären niedrigerer Dimensionen. (German) Fundamenta Mathematicae, 25 (1935), 427–440Google Scholar
  20. ISS99.
    T. Iwaniec, C. Scott and B. Stroffolini. Nonlinear Hodge theory on manifolds with boundary. Annali di Matematica Pura ed Applicata, (4)177 (1999), 37–115Google Scholar
  21. Kau81.
    R. Kaufman. A singular map of a cube onto a square. Journal of Differential Geometry, (1979)14 (1981), 593–594Google Scholar
  22. Mat95.
    P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, Vol. 44. Cambridge University Press, Cambridge (1995)Google Scholar
  23. RW10.
    S. Rigot and S. Wenger. Lipschitz non-extension theorems into jet space Carnot groups. International Mathematics Research Notices IMRN, 18 (2010), 3633–3648Google Scholar
  24. Sco95.
    C. Scott. L p theory of differential forms on manifolds. Transactions of the American Mathematical Society, 347 (1995), 2075–2096Google Scholar
  25. Ser53.
    Serre J.-P.: Groupes d’homotopie et classes de groupes abéliens. Annals of Mathematics, 58, 258–294 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  26. War83.
    F. Warner. Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, Vol. 94. Springer, New York (1983)Google Scholar
  27. WY10.
    S. Wenger and R. Young. Lipschitz extensions into jet space Carnot groups. Mathematical Research Letters, 17 (2010), 1137–1149Google Scholar
  28. WY12.
    S. Wenger and R. Young. Lipschitz homotopy groups of the Heisenberg groups. Geometric and Functional Analysis (2012).Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Piotr Hajłasz
    • 1
  • Armin Schikorra
    • 2
  • Jeremy T. Tyson
    • 3
  1. 1.Department of MathematicsUniversity of PittsburghPittsburghUSA
  2. 2.Max-Planck Institut MiS LeipzigLeipzigGermany
  3. 3.Department of MathematicsUniversity of Illinois atUrbana-ChampaignUrbanaUSA

Personalised recommendations