Skip to main content
Log in

Ergodic theory and the duality principle on homogeneous spaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove mean and pointwise ergodic theorems for the action of a lattice subgroup in a connected algebraic Lie group on infinite volume homogeneous algebraic varieties. Under suitable necessary conditions, our results are quantitative, namely we establish rates of convergence in the mean and pointwise ergodic theorems, which can be estimated explicitly. Our results give a precise and in most cases optimal quantitative form to the duality principle governing dynamics on homogeneous spaces. We illustrate their scope in a variety of equidistribution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A aronson. An introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs, Vol. 50. American Mathematical Society, Providence (1997).

  2. C. A nantharaman-Delaroche, J-P. A nker, and M. B abillot, et al. Théorèmes Ergodiques pour les Actions de Groupes. Monographie de L’Enseignement Mathematique, Vol. 41 (2010).

  3. V. A rnol’d. Arnold’s Problems. Springer, Berlin (2004).

  4. L. A uslander, L. G reen, and F. H ahn. Flows on Homogeneous Spaces. Annals of Mathematics Studies, Vol. 53. Princeton University Press, Princeton (1963).

  5. Y. B enoist and H. O h. Effective equidistribution of S-integral points on symmetric varieties. Annales de l’Institut Fourier (Grenoble), (5)62 (2012), 1889–1942.

  6. C. B ennett and R. S harpley. Interpolation of Operators. Pure and Applied Mathematics, Vol. 129. Academic Press, Inc., Boston (1988).

  7. E. B reuillard. Equidistribution of dense subgroups on nilpotent Lie groups. Ergodic Theory and Dynamical Systems, 30 (2010), 131–150.

  8. S. G. D ani. Continuous equivariant images of lattice-actions on boundaries. Annals of Mathematics (2), 119 (1984), 111–119.

  9. S. G. D ani. Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. Journal für die Reine und Angewandte Mathematik, 359 (1985), 55–89; erratum: Journal für die Reine und Angewandte Mathematik, 359 (1985), 214.

  10. S. G. D ani and G. M argulis. Limit distributions of orbits of unipotent flows and values of quadratic forms. In: I. M. Gelfand Seminar. Advances in Soviet Mathematics, Vol. 16, Part 1. American Mathematical Society, Providence (1993), pp. 91–137.

  11. S. G. D ani and S. R aghavan. Orbits of Euclidean frames under discrete linear groups. Israel Journal of Mathematics, 36 (1980), 300–320.

  12. W. D uke, Z. R udnick, P. S arnak. Density of integer points on affine homogeneous varieties. Duke Mathematical Journal, 71 (1993), 143–179.

  13. A. E skin, G. M argulis, and S. M ozes. Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Annals of Mathematics (2), 147 (1998), 93–141.

  14. A. E skin and C. M cMullen. Mixing, counting, and equidistribution in Lie groups. Duke Mathematical Journal, 71 (1993), 181–209.

  15. A. E skin, S. M ozes, and N. S hah. Unipotent flows and counting lattice points on homogeneous varieties. Annals of Mathematics (2), 143 (1996), 253–299.

  16. H. F urstenberg. The unique ergodicity of the horocycle flow. In: Recent Advances in Topological Dynamics (New Haven, Connecticut, 1972). Lecture Notes in Mathematics, Vol. 318. Springer, Berlin (1973), pp. 95–115.

  17. R. G angolli and V. S. V aradarajan. Harmonic Analysis of Spherical Functions on Real Reductive Groups. Modern Surveys in Mathematics, Vol. 101. Springer, Berlin (1988).

  18. A. G hosh, A. G orodnik, and A. N evo. Diophantine approximation and automorphic spectrum. International Mathematics Research Notices, (2012). doi:10.1093/imrn/rns198.

  19. A. G hosh, A. G orodnik, and A. N evo. Best possible rate of distribution of dense lattice orbits on homogeneous spaces. In preparation.

  20. A. G orodnik. Lattice action on the boundary of \({{\rm SL}(n,\mathbb{R})}\). Ergodic Theory and Dynamical Systems, 23 (2003), 1817–1837.

  21. A. G orodnik. Uniform distribution of orbits of lattices on spaces of frames. Duke Mathematical Journal, 122 (2004), 549–589.

  22. A. G orodnik and F. M aucourant. Proximality and equidistribution on the Furstenberg boundary. Geometriae Dedicata, 113 (2005), 197–213.

  23. A. G orodnik and A. N evo. The Ergodic Theory of Lattice Subgroups. Annals of Mathematics Studies, Vol. 172. Princeton University Press, Princeton (2010).

  24. A. G orodnik and A. N evo. Counting lattice points. Journal für die Reine und Angewandte Mathematik, 663 (2012), 127–176.

  25. A. G orodnik and A. N evo. On Arnold’s and Kazhdan’s equidistribution problems. Ergodic Theory and Dynamical Systems, (6)32 (2012), 1972–1990.

  26. A. G orodnik and A. N evo. Quantitative ergodic theorems and their number theoretic applications. Math ArXiv:1304.6847 (2012).

  27. A. G orodnik and H. O h. Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary. Duke Mathematical Journal, 139 (2007), 483–525.

  28. A. G orodnik and B. W eiss. Distribution of lattice orbits on homogeneous varieties. Geometric and Functional Analysis, 17 (2007), 58–115.

  29. D. K azhdan. Uniform distribution on a plane. Trudy Moskovskogo Matematicheskogo Obshchestva, 14 (1965), 299–305.

  30. D. K elmer and P. S arnak. Strong spectral gaps for compact quotients of products of \({{\rm PSL}(2,\mathbb{R})}\). Journal of the European Mathematical Society, 11 (2009), 283–313.

  31. D. K leinbock and G. M argulis. Bounded orbits of nonquasiunipotent flows on homogeneous spaces. In: Sinai’s Moscow Seminar on Dynamical Systems, American Mathematical Society Translations: Series 2, Vol. 171. American Mathematical Society, Providence (1996), pp. 141–172.

  32. D. K leinbock and G. M argulis. Flows on homogeneous spaces and Diophantine approximation on manifolds. Annals of Mathematics (2), 148 (1998), 339–360.

  33. S. L ang. Report on diophantine approximations. Bulletin de la Société Mathématique de France, 93 (1965), 177–192.

    Google Scholar 

  34. M. L aurent and A. N ogueira. Approximation to points in the plane by \({{\rm SL}(2,\mathbb{Z})}\) -orbits. Journal of the London Mathematical Society (2), (2)85 (2012), 409–429.

  35. F. L edrappier. Distribution des orbites des rśeaux sur le plan réel. Comptes Rendus de l’Académie des Sciences Paris. Série I, Mathématique, 329 (1999), 61–64.

  36. F. L edrappier. Ergodic properties of some linear actions, Journal of Mathematical Sciences, 105, (2001), 1861–1875.

  37. F. L edrappier and M. P ollicott. Ergodic properties of linear actions of (2 × 2)-matrices. Duke Mathematical Journal, 116 (2003), 353–388.

  38. F. L edrappier and M. P ollicott. Distribution results for lattices in \({{\rm SL}(2,\mathbb{Q}_p)}\). Bulletin of the Brazilian Mathematical Society (N.S.), 36 (2005), 143–176.

  39. G. M argulis. On Some Aspects of the Theory of Anosov Systems. With a Survey by Richard Sharp: Periodic Orbits of Hyperbolic Flows. Springer Monographs in Mathematics. Springer, Berlin (2004).

  40. G. M argulis. Oppenheim conjecture. In: Fields Medallists’ Lectures. World Scientific Series in 20th Century Mathematics, Vol. 5. World Science Publisher, River Edge (1997), pp. 272–327.

  41. G. M argulis, A. N evo, and E. S tein. Analogs of Wiener’s ergodic theorems for semi-simple Lie groups II. Duke Mathematical Journal, 103 (2000), 233–259.

  42. J. M arklof and A. S trömbergsson. The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Annals of Mathematics, 172 (2010), 1949–2033.

  43. J. M arklof and A. S trömbergsson. The Boltzmann–Grad limit of the periodic Lorentz gas. Annals of Mathematics, 174 (2011), 225–298.

  44. C. C. M oore. Ergodicity of flows on homogeneous spaces. American Journal of Mathematics, 88 (1966), 154–178.

  45. F. M aucourant. Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices. Duke Mathematical Journal, 136 (2007), 357–399.

  46. F. M aucourant and B. W eiss. Lattice actions on the plane revisited. Geometriae Dedicata, 157 (2012), 1–21.

  47. A. N evo. Pointwise Ergodic Theorems for Actions of Groups. Handbook of Dynamical Systems, Vol. 1B. Elsevier B. V., Amsterdam (2006), pp. 871–982.

  48. A. N ogueira. Orbit distribution on \({\mathbb{R}^2}\) under the natural action of \({{\rm SL}(2,\mathbb{Z})}\). Indagationes Mathematicae (N.S.), 13 (2002), 103–124.

  49. A. P arusinski. Subanalytic functions. Transactions of the American Mathematical Society, 344 (1994), 583–595.

  50. W. R udin. Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987).

  51. N. S hah. Limit distributions of expanding translates of certain orbits on homogeneous spaces. The Proceedings of the Indian Academy of Sciences, 106 (1996), 105–125.

  52. R. S patzier. On lattices acting on boundaries of semisimple groups. Ergodic Theory and Dynamical Systems, 1 (1981), 489–494.

  53. W. A. V eech. Minimality of horospherical flows. Israel Journal of Mathematics, 21 (1975), 233–239.

  54. W. A. V eech. Unique ergodicity of horospherical flows. American Journal of Mathematics, 99 (1977), 827–859.

  55. R. Z immer. Induced and amenable actions of Lie groups. Annales scientifiques de l’École Normale Supérieure, 11 (1976), 407–428.

  56. R. Z immer. Equivariant images of projective space under the action of \({{SL}(n, \mathbb{Z})}\). Ergodic Theory and Dynamical Systems, 1 (1981), 519–522.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Nevo.

Additional information

Alexander Gorodnik was supported in part by EPSRC, ERC, and RCUK. Amos Nevo was supported by ISF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorodnik, A., Nevo, A. Ergodic theory and the duality principle on homogeneous spaces. Geom. Funct. Anal. 24, 159–244 (2014). https://doi.org/10.1007/s00039-014-0257-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0257-8

Keywords

Navigation