Geometric and Functional Analysis

, Volume 23, Issue 4, pp 1262–1277 | Cite as

On the Sharpness of Mockenhaupt’s Restriction Theorem



We prove that the range of exponents in Mockenhaupt’s restriction theorem for Salem sets (Geom Funct Anal 10:1579–1587, 2000), with the endpoint estimate due to Bak and Seeger (Math Res Lett 18:767–781, 2011), is optimal.

Mathematics Subject Classification

28A78 42A32 42A38 42A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BS11.
    Bak J.-G., Seeger A.: Extensions of the Stein-Tomas theorem. Mathematical Research Letter. 18(4), 767–781 (2011)MathSciNetGoogle Scholar
  2. Bil99.
    P. Billingsley. Convergence of Probability Measures, 2nd edn, Wiley, New York, NY (1999).Google Scholar
  3. Blu96.
    Bluhm C.: Random recursive construction of Salem sets. Arkiv för Matematik 34, 51–63 (1996)MathSciNetMATHCrossRefGoogle Scholar
  4. Blu98.
    Bluhm C.: On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets. Arkiv för Matematik 36, 307–316 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. Che12.
    X. Chen. A Fourier restriction theorem based on convolution powers. Proceedings in American Mathematical Society, (2012) (preprint).Google Scholar
  6. Kah85.
    J.P. Kahane. Some Random Series of Functions. Cambridge University Press, Cambridge (1985).Google Scholar
  7. Kau81.
    L. Kaufman. On the theorem of Jarnik and Besicovitch. Acta Arithmetica 39 (1981), 265–267.Google Scholar
  8. Kör08.
    T.W. Körner. On a theorem of Saeki concerning convolution squares of singular measures. Bulletin de la Société Mathématique de France. 136 (2008), 439–464.Google Scholar
  9. LP09.
    I. Łaba and M. Pramanik. Arithmetic progressions in sets of fractional dimension. Geometric and Functional Analysis, (2)19 (2009), 429–456.Google Scholar
  10. Mat95.
    P. Mattila. Geometry of sets and measures in Euclidean spaces. Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge (1995).Google Scholar
  11. Mit02.
    T. Mitsis. A Stein–Tomas restriction theorem for general measures. Publ. Math. Debrecen, 60 (2002), 89–99.Google Scholar
  12. Moc00.
    G. Mockenhaupt. Salem sets and restriction properties of Fourier transforms. Geometric and Functional Analysis, 10 (2000), 1579–1587.Google Scholar
  13. Sal50.
    R. Salem. On singular monotonic functions whose spectrum has a given Hausdorff dimension. Arkiv för Matematik, 1 (1950), 353–365.Google Scholar
  14. Ste86.
    E.M. Stein. Oscillatory integrals in Fourier analysis. In: Beijing Lectures in Harmonic Analysis. E.M. Stein (ed) Annals Mathematics Study, Ser. 112, Princeton University Press, Princeton (1986), pp. 307–355.Google Scholar
  15. EMS93.
    E.M. Stein. Harmonic Analysis. Princeton University Press, Princeton (1993).Google Scholar
  16. Tom75.
    P.A. Tomas. A restriction theorem for the Fourier transform. Bulletin American Mathematical Society, 81 (1975), 477–478.Google Scholar
  17. Tom79.
    P.A. Tomas. Restriction theorems for the Fourier transform. In: Harmonic Analysis in Euclidean Spaces, G. Weiss and S. Wainger (eds) Proceedings of Symposia in Pure Mathematics. Ser. 35, vol, I. American Mathematical Society, (1979), pp. 111–114.Google Scholar
  18. Wol03.
    T. Wolff. Lectures on Harmonic Analysis, In: I. Łaba and C. Shubin (eds) American Mathematical Society, Providence, RI (2003).Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations