Skip to main content
Log in

Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Bishop.An A 1 weight not comparable with any quasiconformal Jacobian. In In the tradition of Ahlfors-Bers. IV. Contemp. Math., vol. 432. Amer. Math. Soc., Providence (2007), pp. 7–18.

  2. Bishop C.J, Tyson J.T: Locally minimal sets for conformal dimension. Ann. Acad. Sci. Fenn. Ser. A I Math. 26, 361–373 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bonk M: Uniformization of Sierpiński carpets in the plane. Invent. Math. 186(3), 559–665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonk M., Kleiner B., Merenkov S.: Rigidity of Schottky sets. Amer. J. Math. 131(2), 409–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonk M., Merenkov S.: Quasisymmetric rigidity of square Sierpiński carpets. Annals of Math. 177, 591–643 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bourdon, and H. Pajot. Poincaré inequalities and quasiconformal structure on the boundaries of some hyperbolic buildings. Proc. Amer. Math. Soc. (8)127 (1999), 2315–2324.

    Google Scholar 

  7. M. Bourdon, and H. Pajot. Quasi-conformal geometry and hyperbolic geometry. In Rigidity in dynamics and geometry (Cambridge, 2000). Springer, Berlin (2002), pp. 1–17.

  8. D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001).

  9. Buser P.: A note on the isoperimetric constant. Ann. Sci.Ecole Norm. Sup. 15(4), 213–230 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Doré, and O. Maleva. A compact null set containing a differentiability point of every Lipschitz function. Math. Ann. (3)351 (2011), 633–663.

    Google Scholar 

  12. E. Durand Cartagena, J.A. Jaramillo, and N. Shanmugalingam. The ∞-Poincaré inequality in metric measure spaces. Michigan Math. J. (1)61 (2012), 63–85.

    Google Scholar 

  13. E. Durand Cartagena, and J.T. Tyson. Rectifiable curves in Sierpiński carpets. Indiana Univ. Math. J. (1)60 (2011), 285–309.

    Google Scholar 

  14. G.M. Goluzin. Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, vol. 26. American Mathematical Society, Providence (1969).

  15. Hajłasz P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)

    MathSciNet  MATH  Google Scholar 

  16. B. Hanson and J. Heinonen. An n-dimensional space that admits a Poincaré inequality but has no manifold points. Proc. Amer. Math. Soc. (11)128 (2000), 3379–3390.

    Google Scholar 

  17. Heinonen J.: Quasiconformal mappings onto John domains. Rev. Mat. Iberoamericana 5, 97–123 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heinonen J.: A capacity estimate on Carnot groups. Bull. Sci. Math. 119, 475–484 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Heinonen, P. Koskela, N. Shanmugalingam, and J.T. Tyson. Sobolev classes of Banach space-valued functions and quasiconformal mappings.J. Anal. Math. 85 (2001), 87–139.

    Google Scholar 

  21. Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53, 503–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keith S.: Modulus and the Poincaré inequality on metric measure spaces. Math. Z. 245(2), 255–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keith S.: A differentiable structure for metric measure spaces. Adv. Math. 183(2), 271–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keith S., Laakso T.: Conformal Assouad dimension and modulus. Geom. Funct. Anal. 14(6), 1278–1321 (2004)

    Article  MathSciNet  Google Scholar 

  25. Keith S., Zhong X.: The Poincaré inequality is an open ended condition. Annals of Math. 167(2), 575–599 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Koskela. Upper gradients and Poincaré inequalities. In Lecture notes on analysis in metric spaces (Trento, 1999), Appunti Corsi Tenuti Docenti Sc. Scuola Norm. Sup., Pisa (2000), pp. 55–69.

  27. Koskela P., MacManus P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131, 1–17 (1998)

    MathSciNet  MATH  Google Scholar 

  28. T. Laakso. Ahlfors Q-regular spaces with arbitrary Q admitting weak Poincaré inequalities. Geom. Funct. Anal. 10 (2000), 111–123.

    Google Scholar 

  29. J. Mackay, and J.T. Tyson. Conformal dimension: theory and application. University Lecture Series, vol. 54. American Mathematical Society (2010).

  30. Merenkov S.: A Sierpiński carpet with the co-Hopfian property. Invent. Math. 180(2), 361–388 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Merenkov S.: Planar relative Schottky sets and quasisymmetric maps. Proc. London Math. Soc. 104(3), 455–485 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Semmes S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. 2, 155–295 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tyson J.T.: Analytic properties of locally quasisymmetric mappings from Euclidean domains. Indiana Univ. Math. J. 49(3), 995–1016 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Tyson.

Additional information

J. M. Mackay and J. T. Tyson were supported by US National Science Foundation Grant DMS-0901620. J. M. Mackay was supported by EPSRC grant “Geometric and analytic aspects of infinite groups”. J. T. Tyson was supported by US National Science Foundation Grant DMS-1201875. K. Wildrick supported by Academy of Finland Grants 120972 and 128144, the Swiss National Science Foundation, ERC Project CG-DICE, and European Science Council Project HCAA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, J.M., Tyson, J.T. & Wildrick, K. Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets. Geom. Funct. Anal. 23, 985–1034 (2013). https://doi.org/10.1007/s00039-013-0227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0227-6

Keywords and phrases

Mathematics Subject Classification (1991)

Navigation