Abstract
A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.
Similar content being viewed by others
References
C.J. Bishop.An A 1 weight not comparable with any quasiconformal Jacobian. In In the tradition of Ahlfors-Bers. IV. Contemp. Math., vol. 432. Amer. Math. Soc., Providence (2007), pp. 7–18.
Bishop C.J, Tyson J.T: Locally minimal sets for conformal dimension. Ann. Acad. Sci. Fenn. Ser. A I Math. 26, 361–373 (2001)
Bonk M: Uniformization of Sierpiński carpets in the plane. Invent. Math. 186(3), 559–665 (2011)
Bonk M., Kleiner B., Merenkov S.: Rigidity of Schottky sets. Amer. J. Math. 131(2), 409–443 (2009)
Bonk M., Merenkov S.: Quasisymmetric rigidity of square Sierpiński carpets. Annals of Math. 177, 591–643 (2013)
M. Bourdon, and H. Pajot. Poincaré inequalities and quasiconformal structure on the boundaries of some hyperbolic buildings. Proc. Amer. Math. Soc. (8)127 (1999), 2315–2324.
M. Bourdon, and H. Pajot. Quasi-conformal geometry and hyperbolic geometry. In Rigidity in dynamics and geometry (Cambridge, 2000). Springer, Berlin (2002), pp. 1–17.
D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001).
Buser P.: A note on the isoperimetric constant. Ann. Sci.Ecole Norm. Sup. 15(4), 213–230 (1982)
Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)
M. Doré, and O. Maleva. A compact null set containing a differentiability point of every Lipschitz function. Math. Ann. (3)351 (2011), 633–663.
E. Durand Cartagena, J.A. Jaramillo, and N. Shanmugalingam. The ∞-Poincaré inequality in metric measure spaces. Michigan Math. J. (1)61 (2012), 63–85.
E. Durand Cartagena, and J.T. Tyson. Rectifiable curves in Sierpiński carpets. Indiana Univ. Math. J. (1)60 (2011), 285–309.
G.M. Goluzin. Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, vol. 26. American Mathematical Society, Providence (1969).
Hajłasz P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)
B. Hanson and J. Heinonen. An n-dimensional space that admits a Poincaré inequality but has no manifold points. Proc. Amer. Math. Soc. (11)128 (2000), 3379–3390.
Heinonen J.: Quasiconformal mappings onto John domains. Rev. Mat. Iberoamericana 5, 97–123 (1989)
Heinonen J.: A capacity estimate on Carnot groups. Bull. Sci. Math. 119, 475–484 (1995)
Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)
J. Heinonen, P. Koskela, N. Shanmugalingam, and J.T. Tyson. Sobolev classes of Banach space-valued functions and quasiconformal mappings.J. Anal. Math. 85 (2001), 87–139.
Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53, 503–523 (1986)
Keith S.: Modulus and the Poincaré inequality on metric measure spaces. Math. Z. 245(2), 255–292 (2003)
Keith S.: A differentiable structure for metric measure spaces. Adv. Math. 183(2), 271–315 (2004)
Keith S., Laakso T.: Conformal Assouad dimension and modulus. Geom. Funct. Anal. 14(6), 1278–1321 (2004)
Keith S., Zhong X.: The Poincaré inequality is an open ended condition. Annals of Math. 167(2), 575–599 (2008)
P. Koskela. Upper gradients and Poincaré inequalities. In Lecture notes on analysis in metric spaces (Trento, 1999), Appunti Corsi Tenuti Docenti Sc. Scuola Norm. Sup., Pisa (2000), pp. 55–69.
Koskela P., MacManus P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131, 1–17 (1998)
T. Laakso. Ahlfors Q-regular spaces with arbitrary Q admitting weak Poincaré inequalities. Geom. Funct. Anal. 10 (2000), 111–123.
J. Mackay, and J.T. Tyson. Conformal dimension: theory and application. University Lecture Series, vol. 54. American Mathematical Society (2010).
Merenkov S.: A Sierpiński carpet with the co-Hopfian property. Invent. Math. 180(2), 361–388 (2010)
Merenkov S.: Planar relative Schottky sets and quasisymmetric maps. Proc. London Math. Soc. 104(3), 455–485 (2012)
Semmes S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. 2, 155–295 (1996)
Tyson J.T.: Analytic properties of locally quasisymmetric mappings from Euclidean domains. Indiana Univ. Math. J. 49(3), 995–1016 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
J. M. Mackay and J. T. Tyson were supported by US National Science Foundation Grant DMS-0901620. J. M. Mackay was supported by EPSRC grant “Geometric and analytic aspects of infinite groups”. J. T. Tyson was supported by US National Science Foundation Grant DMS-1201875. K. Wildrick supported by Academy of Finland Grants 120972 and 128144, the Swiss National Science Foundation, ERC Project CG-DICE, and European Science Council Project HCAA.
Rights and permissions
About this article
Cite this article
Mackay, J.M., Tyson, J.T. & Wildrick, K. Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets. Geom. Funct. Anal. 23, 985–1034 (2013). https://doi.org/10.1007/s00039-013-0227-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00039-013-0227-6