Skip to main content
Log in

The Distribution of Gaps for Saddle Connection Directions

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Motivated by the study of billiards in polygons, we prove fine results for the distribution of gaps of directions of saddle connections on translation surfaces. As an application we prove that for almost every holomorphic differential ω on a Riemann surface of genus g ≥ 2 the smallest gap between saddle connection directions of length at most a fixed length decays faster than quadratically in the length. We also characterize the exceptional set: the decay rate is not faster than quadratic if and only if ω is a lattice surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avila and S. Gouezel. Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmller flow (preprint).

  2. Boca F., Cobeli C., Zaharescu A.: Distribution of lattice points visible from the origin. Communications in Mathematical Physics 213, 433–470 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Boca, V. Pasol, A. Popa and A. Zaharescu. Pair Correlation of Angles Between Reciprocal Geodesics on the Modular Surface. Preprint. arXiv:1102.032.

  4. Cheung Y., Hubert P., Masur H.: Topological dichotomy and strict ergodicity for translation surfaces. Ergodic Theory and Dynamical System 28(6), 1729–1748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eskin A., Margulis G., Mozes S.: Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Annals of Mathematics 147(1), 93–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eskin A., Marklof J., Morris D.: Unipotent flows on the space of branched covers of Veech surfaces. Ergodic Theory and and Dynamical Systems 26(1), 129–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eskin A., Masur H.: Asymptotic formulas on flat surfaces. Ergodic Theory and Dynamical Systems 21, 443–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eskin A., Masur H., Schmoll M.: Billiards in rectangles with barriers. Duke Mathematical Journal 118(3), 427–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eskin A., Masur H., Zorich A.: Moduli spaces of abelian differentials: The principal boundary, counting problems, and the Siegel–Veech constants. Publ. Math. Inst. Hautes Etudes Sci. No 97, 61–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kontsevich M., Zorich A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Inventiones Mathematicae 153(3), 631–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Lanneau. Connected components of the strata of the moduli spaces of quadratic differentials. Ann. Sci. Ec. Norm. Super., (4)41 (2008), no. 1, 1–56.

  12. J. Marklof. Distribution modulo one and Ratner’s theorem. Equidistribution in number theory, an introduction. In: NATO Sci. Ser. II Math. Phys. Chem., Vol. 237. Springer, Dordrecht (2007), pp. 217–244.

  13. J. Marklof and A. Strombergsson. Distribution of Free Path Lengths in the Periodic Lorentz Gas and Related Lattice Point Problems. Preprint. arxiv:0706.4395 (math.DS).

  14. H. Masur. Interval exchange transformations and measured foliations. Annals of Mathematics, (2)115 (1982), no. 1, 169–200.

  15. Masur H.: Closed trajectories for quadratic differentials with an application to billiards. Duke Mathematical Journal 53(2), 307–314 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Masur H.: The growth rate of trajectories of a quadratic differential. Ergodic Theory and Dynamical Systems 10(1), 151–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Masur and J. Smillie. Hausdorff dimension of sets of nonergodic measured foliations. Annals of Mathematics, (2)134 (1991), no. 3, 455–543.

  18. H. Masur and S. Tabachnikov. Rational Billiards and Flat Structures. Handboook of Dynamical Systems, Vol. 1A (2002), pp. 1015–1089.

  19. H. Masur. Ergodic Theory of Translation Surfaces. Handbook of Dynamical Systems. Vol. 1B. Elsevier, Amsterdam (2006), pp. 527–547.

  20. Shah N.: Limit distributions of expanding translates of certain orbits on homogeneous spaces. Proc. Indian Acad. Sci. (Math Sci) 106(2), 105–125 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smillie J., Weiss B.: Characterizations of lattice surfaces. Inventiones Mathematicae 180(3), 535–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Veech. Gauss measures for transformations on the space of interval exchange maps. Annals of Mathematics, (2)115 (1982), no. 1, 201–242.

  23. W. Veech. Geometric realizations of hyperelliptic curves. Algorithms, fractals, and dynamics. Okayama/Kyoto (1992), pp. 217–226.

  24. W. Veech. Siegel measures. Annals of Mathematics, (2)148 (1998), no. 3, 895–944.

  25. Vorobets Y.: Planar structures and billiards in rational polygons: The Veech alternative. Russian Mathematical Surveys 51(5), 779–817 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Vorobets. Periodic geodesics on generic translation surfaces. Algebraic and topological dynamics. Contemp. Math., Vol. 385. American Mathematical Society, Providence (2005) pp. 205–258.

  27. Zemljakov A., Katok A.: Topological transitivity of billiards in polygons. (Russian) Mat. Zametki 18(2), 291–300 (1975)

    MathSciNet  Google Scholar 

  28. A. Zorich. Flat surfaces. Frontiers in Number Theory, Physics, and Geometry. I. Springer, Berlin, (2006), pp. 437–583.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Athreya.

Additional information

J. S. Athreya was partially supported by NSF grant DMS 1069153. J. Chaika was partially supported by NSF grant DMS 1004372.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athreya, J.S., Chaika, J. The Distribution of Gaps for Saddle Connection Directions. Geom. Funct. Anal. 22, 1491–1516 (2012). https://doi.org/10.1007/s00039-012-0164-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0164-9

Mathematics Subject Classification (2000)

Navigation